Olga E Kvitko, Dmitrii A Fedorov, Svetlana V Sidorenko, Olga D Lopina, Elizaveta A Klimanova
{"title":"Accumulation of Li<sup>+</sup> Ions Triggers Changes in <i>FOS</i>, <i>JUN</i>, <i>EGR1</i>, and <i>MYC</i> Transcription in the LiCl-Treated Human Umbilical Vein Endothelial Cells (HUVEC).","authors":"Olga E Kvitko, Dmitrii A Fedorov, Svetlana V Sidorenko, Olga D Lopina, Elizaveta A Klimanova","doi":"10.1134/S0006297924100146","DOIUrl":null,"url":null,"abstract":"<p><p>Changes in intracellular concentrations of Na<sup>+</sup> and K<sup>+</sup> are shown to alter gene expression. Another monovalent cation, Li<sup>+</sup>, is well known as a medicine for treatment of psychiatric disorders, but mechanism of its action is obscure. Thus, it is important to evaluate the effect of Li<sup>+</sup> on gene expression in endothelial cells. Here we studied influence of the increased intracellular Na<sup>+</sup> or Li<sup>+</sup> concentrations on transcription of Na<sup>+</sup><sub>i</sub>/K<sup>+</sup><sub>i</sub>-sensitive genes. Treatment of the human endothelial cells (HUVEC) with LiCl for 1.5 h resulted in accumulation of Li<sup>+</sup> in the cells. This was followed by increase in the <i>FOS</i> and <i>EGR1</i> mRNAs levels and decrease in the <i>JUN</i> and <i>MYC</i> mRNA levels. Treatment of HUVEC with the Na<sup>+</sup>-ionophore monensin led to accumulation of Na<sup>+</sup> and loss of K<sup>+</sup> ions. However, monensin had no significant effect on gene expression. Incubation of HUVEC with elevated extracellular NaCl concentration increased intracellular K<sup>+</sup> concentration and transcription of the <i>ATF3</i> gene, while transcription of the <i>JUN</i> gene decreased. These results indicate that Na<sup>+</sup> and Li<sup>+</sup> ions have different effects on the gene expression profile in the cells that is likely associated with the fact that they affect differently the intracellular monovalent cations ratio.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 10","pages":"1844-1850"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow)","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1134/S0006297924100146","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Changes in intracellular concentrations of Na+ and K+ are shown to alter gene expression. Another monovalent cation, Li+, is well known as a medicine for treatment of psychiatric disorders, but mechanism of its action is obscure. Thus, it is important to evaluate the effect of Li+ on gene expression in endothelial cells. Here we studied influence of the increased intracellular Na+ or Li+ concentrations on transcription of Na+i/K+i-sensitive genes. Treatment of the human endothelial cells (HUVEC) with LiCl for 1.5 h resulted in accumulation of Li+ in the cells. This was followed by increase in the FOS and EGR1 mRNAs levels and decrease in the JUN and MYC mRNA levels. Treatment of HUVEC with the Na+-ionophore monensin led to accumulation of Na+ and loss of K+ ions. However, monensin had no significant effect on gene expression. Incubation of HUVEC with elevated extracellular NaCl concentration increased intracellular K+ concentration and transcription of the ATF3 gene, while transcription of the JUN gene decreased. These results indicate that Na+ and Li+ ions have different effects on the gene expression profile in the cells that is likely associated with the fact that they affect differently the intracellular monovalent cations ratio.
期刊介绍:
Biochemistry (Moscow) is the journal that includes research papers in all fields of biochemistry as well as biochemical aspects of molecular biology, bioorganic chemistry, microbiology, immunology, physiology, and biomedical sciences. Coverage also extends to new experimental methods in biochemistry, theoretical contributions of biochemical importance, reviews of contemporary biochemical topics, and mini-reviews (News in Biochemistry).