首页 > 最新文献

Biochemistry (Moscow)最新文献

英文 中文
Computational Assessment of Carotenoids as Keap1-Nrf2 Protein–Protein Interaction Inhibitors: Implications for Antioxidant Strategies 类胡萝卜素作为 Keap1-Nrf2 蛋白-蛋白相互作用抑制剂的计算评估:对抗氧化策略的影响
IF 2.8 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-20 DOI: 10.1134/s0006297924100031
Alessandro Medoro, Tassadaq Hussain Jafar, Fabio Sallustio, Giovanni Scapagnini, Luciano Saso, Sergio Davinelli

Abstract

The Keap1-Nrf2 pathway is an essential system that maintains redox homeostasis and modulates key metabolic processes, including metabolism of amino acids to promote the synthesis of antioxidant enzymes. Inhibitors of the protein-protein interaction (PPI) between Keap1 and Nrf2 have emerged as a promising strategy for developing novel classes of antioxidant agents that selectively activate this pathway without off-target effects. Carotenoids, a large family of lipophilic isoprenoids synthesized by all photosynthetic organisms, are well-known for their antioxidant activities. However, the ability of carotenoids to inhibit the Keap1-Nrf2 PPI through the involvement of specific amino acid residues has not yet been revealed. We utilized molecular docking, molecular dynamic simulations, and pharmacokinetic prediction techniques to investigate the potential of eight oxygenated carotenoids, known as xanthophylls, to inhibit Keap1. Among the compounds investigated, fucoxanthin and astaxanthin established multiple hydrogen-bonding and hydrophobic interactions within the Kelch domain of Keap1, showing remarkable binding affinities. Furthermore, fucoxanthin and astaxanthin displayed the ability to form a stable complex with Keap1 and fit into the binding pocket of its Kelch domain. These analyses led to the identification of critical amino acid residues in the binding pocket of Keap1 which are involved in the interaction with carotenoid xanthophylls. Our analyses further revealed that fucoxanthin and astaxanthin demonstrate a favorable safety profile and possess pharmacokinetic properties consistent with acceptable drug-like characteristics. These findings lay the preliminary foundation for developing a novel class of Keap1-Nrf2 PPI inhibitors with potential applications against oxidative stress-related diseases.

摘要 Keap1-Nrf2通路是维持氧化还原平衡和调节关键代谢过程(包括氨基酸代谢以促进抗氧化酶的合成)的重要系统。Keap1和Nrf2之间的蛋白-蛋白相互作用(PPI)抑制剂已成为开发新型抗氧化剂的一种有前途的策略,这种抗氧化剂可选择性地激活这一途径,而不会产生脱靶效应。类胡萝卜素是所有光合生物合成的一大类亲脂性异戊烯化合物,以其抗氧化活性而闻名。然而,类胡萝卜素通过特定氨基酸残基的参与抑制 Keap1-Nrf2 PPI 的能力尚未被揭示。我们利用分子对接、分子动力学模拟和药代动力学预测技术研究了八种含氧类胡萝卜素(即黄绿素)抑制 Keap1 的潜力。在所研究的化合物中,岩藻黄素和虾青素在Keap1的Kelch结构域内建立了多种氢键和疏水相互作用,显示出显著的结合亲和力。此外,岩藻黄素和虾青素还能与 Keap1 形成稳定的复合物,并进入其 Kelch 结构域的结合口袋。通过这些分析,我们确定了 Keap1 结合口袋中与类胡萝卜素黄绿素相互作用的关键氨基酸残基。我们的分析进一步揭示了岩藻黄素和虾青素具有良好的安全性,其药代动力学特性符合可接受的类药物特性。这些发现为开发一类新型Keap1-Nrf2 PPI抑制剂奠定了初步基础,这种抑制剂具有防治氧化应激相关疾病的潜力。
{"title":"Computational Assessment of Carotenoids as Keap1-Nrf2 Protein–Protein Interaction Inhibitors: Implications for Antioxidant Strategies","authors":"Alessandro Medoro, Tassadaq Hussain Jafar, Fabio Sallustio, Giovanni Scapagnini, Luciano Saso, Sergio Davinelli","doi":"10.1134/s0006297924100031","DOIUrl":"https://doi.org/10.1134/s0006297924100031","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The Keap1-Nrf2 pathway is an essential system that maintains redox homeostasis and modulates key metabolic processes, including metabolism of amino acids to promote the synthesis of antioxidant enzymes. Inhibitors of the protein-protein interaction (PPI) between Keap1 and Nrf2 have emerged as a promising strategy for developing novel classes of antioxidant agents that selectively activate this pathway without off-target effects. Carotenoids, a large family of lipophilic isoprenoids synthesized by all photosynthetic organisms, are well-known for their antioxidant activities. However, the ability of carotenoids to inhibit the Keap1-Nrf2 PPI through the involvement of specific amino acid residues has not yet been revealed. We utilized molecular docking, molecular dynamic simulations, and pharmacokinetic prediction techniques to investigate the potential of eight oxygenated carotenoids, known as xanthophylls, to inhibit Keap1. Among the compounds investigated, fucoxanthin and astaxanthin established multiple hydrogen-bonding and hydrophobic interactions within the Kelch domain of Keap1, showing remarkable binding affinities. Furthermore, fucoxanthin and astaxanthin displayed the ability to form a stable complex with Keap1 and fit into the binding pocket of its Kelch domain. These analyses led to the identification of critical amino acid residues in the binding pocket of Keap1 which are involved in the interaction with carotenoid xanthophylls. Our analyses further revealed that fucoxanthin and astaxanthin demonstrate a favorable safety profile and possess pharmacokinetic properties consistent with acceptable drug-like characteristics. These findings lay the preliminary foundation for developing a novel class of Keap1-Nrf2 PPI inhibitors with potential applications against oxidative stress-related diseases.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.8,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142185888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrafast Proteomics. 超快蛋白质组学
IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-01 DOI: 10.1134/S0006297924080017
Ivan I Fedorov, Sergey A Protasov, Irina A Tarasova, Mikhail V Gorshkov

Current stage of proteomic research in the field of biology, medicine, development of new drugs, population screening, or personalized approaches to therapy dictates the need to analyze large sets of samples within the reasonable experimental time. Until recently, mass spectrometry measurements in proteomics were characterized as unique in identifying and quantifying cellular protein composition, but low throughput, requiring many hours to analyze a single sample. This was in conflict with the dynamics of changes in biological systems at the whole cellular proteome level upon the influence of external and internal factors. Thus, low speed of the whole proteome analysis has become the main factor limiting developments in functional proteomics, where it is necessary to annotate intracellular processes not only in a wide range of conditions, but also over a long period of time. Enormous level of heterogeneity of tissue cells or tumors, even of the same type, dictates the need to analyze biological systems at the level of individual cells. These studies involve obtaining molecular characteristics for tens, if not hundreds of thousands of individual cells, including their whole proteome profiles. Development of mass spectrometry technologies providing high resolution and mass measurement accuracy, predictive chromatography, new methods for peptide separation by ion mobility and processing of proteomic data based on artificial intelligence algorithms have opened a way for significant, if not radical, increase in the throughput of whole proteome analysis and led to implementation of the novel concept of ultrafast proteomics. Work done just in the last few years has demonstrated the proteome-wide analysis throughput of several hundred samples per day at a depth of several thousand proteins, levels unimaginable three or four years ago. The review examines background of these developments, as well as modern methods and approaches that implement ultrafast analysis of the entire proteome.

现阶段,生物学、医学、新药开发、群体筛选或个性化治疗领域的蛋白质组学研究需要在合理的实验时间内分析大量样本。直到最近,蛋白质组学中的质谱测量在鉴定和量化细胞蛋白质组成方面仍具有独特性,但通量低,分析一个样品需要许多小时。这与生物系统在整个细胞蛋白质组水平上受内外因素影响而发生的动态变化相矛盾。因此,低速的全蛋白质组分析已成为限制功能蛋白质组学发展的主要因素,因为在功能蛋白质组学中,不仅需要在各种条件下注释细胞内过程,还需要在很长一段时间内注释细胞内过程。由于组织细胞或肿瘤(即使是同一类型的组织细胞或肿瘤)具有极大的异质性,因此需要在单个细胞的水平上分析生物系统。这些研究需要获得数以万计甚至数十万计的单个细胞的分子特征,包括它们的整个蛋白质组图谱。提供高分辨率和质量测量精度的质谱技术、预测色谱法、通过离子迁移率分离肽的新方法以及基于人工智能算法的蛋白质组数据处理技术的发展,为大幅(甚至彻底)提高全蛋白质组分析的通量开辟了道路,并导致了超快蛋白质组这一新理念的实现。仅在过去几年中完成的工作就证明了每天几百个样本、几千个蛋白质深度的全蛋白质组分析吞吐量,这在三四年前是不可想象的。本综述探讨了这些发展的背景,以及对整个蛋白质组进行超快分析的现代方法和途径。
{"title":"Ultrafast Proteomics.","authors":"Ivan I Fedorov, Sergey A Protasov, Irina A Tarasova, Mikhail V Gorshkov","doi":"10.1134/S0006297924080017","DOIUrl":"https://doi.org/10.1134/S0006297924080017","url":null,"abstract":"<p><p>Current stage of proteomic research in the field of biology, medicine, development of new drugs, population screening, or personalized approaches to therapy dictates the need to analyze large sets of samples within the reasonable experimental time. Until recently, mass spectrometry measurements in proteomics were characterized as unique in identifying and quantifying cellular protein composition, but low throughput, requiring many hours to analyze a single sample. This was in conflict with the dynamics of changes in biological systems at the whole cellular proteome level upon the influence of external and internal factors. Thus, low speed of the whole proteome analysis has become the main factor limiting developments in functional proteomics, where it is necessary to annotate intracellular processes not only in a wide range of conditions, but also over a long period of time. Enormous level of heterogeneity of tissue cells or tumors, even of the same type, dictates the need to analyze biological systems at the level of individual cells. These studies involve obtaining molecular characteristics for tens, if not hundreds of thousands of individual cells, including their whole proteome profiles. Development of mass spectrometry technologies providing high resolution and mass measurement accuracy, predictive chromatography, new methods for peptide separation by ion mobility and processing of proteomic data based on artificial intelligence algorithms have opened a way for significant, if not radical, increase in the throughput of whole proteome analysis and led to implementation of the novel concept of ultrafast proteomics. Work done just in the last few years has demonstrated the proteome-wide analysis throughput of several hundred samples per day at a depth of several thousand proteins, levels unimaginable three or four years ago. The review examines background of these developments, as well as modern methods and approaches that implement ultrafast analysis of the entire proteome.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to: Multi-Directional Mechanisms of Participation of the TRIM Gene Family in Response of Innate Immune System to Bacterial Infections. 勘误:TRIM 基因家族参与先天性免疫系统对细菌感染反应的多向性机制》(Multi-Directional Mechanisms of Participation of the TRIM Gene Family in Response of Innate Immune System to Bacterial Infections)一文的勘误。
IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-01 DOI: 10.1134/S0006297924080121
Valentina V Nenasheva, Ekaterina A Stepanenko, Vyacheslav Z Tarantul
{"title":"Erratum to: Multi-Directional Mechanisms of Participation of the <i>TRIM</i> Gene Family in Response of Innate Immune System to Bacterial Infections.","authors":"Valentina V Nenasheva, Ekaterina A Stepanenko, Vyacheslav Z Tarantul","doi":"10.1134/S0006297924080121","DOIUrl":"https://doi.org/10.1134/S0006297924080121","url":null,"abstract":"","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IGF Signaling in the Heart in Health and Disease. 健康和疾病中心脏的 IGF 信号转导。
IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-01 DOI: 10.1134/S0006297924080042
Daria A Adasheva, Daria V Serebryanaya

One of the most vital processes of the body is the cardiovascular system's proper operation. Physiological processes in the heart are regulated by the balance of cardioprotective and pathological mechanisms. The insulin-like growth factor system (IGF system, IGF signaling pathway) plays a pivotal role in regulating growth and development of various cells and tissues. In myocardium, the IGF system provides cardioprotective effects as well as participates in pathological processes. This review summarizes recent data on the role of IGF signaling in cardioprotection and pathogenesis of various cardiovascular diseases, as well as analyzes severity of these effects in various scenarios.

心血管系统的正常运行是人体最重要的过程之一。心脏的生理过程受心脏保护机制和病理机制的平衡调节。胰岛素样生长因子系统(IGF 系统,IGF 信号通路)在调节各种细胞和组织的生长发育方面发挥着关键作用。在心肌中,IGF 系统具有保护心脏的作用,同时也参与病理过程。本综述总结了有关 IGF 信号在心血管保护和各种心血管疾病发病机制中作用的最新数据,并分析了这些作用在各种情况下的严重程度。
{"title":"IGF Signaling in the Heart in Health and Disease.","authors":"Daria A Adasheva, Daria V Serebryanaya","doi":"10.1134/S0006297924080042","DOIUrl":"https://doi.org/10.1134/S0006297924080042","url":null,"abstract":"<p><p>One of the most vital processes of the body is the cardiovascular system's proper operation. Physiological processes in the heart are regulated by the balance of cardioprotective and pathological mechanisms. The insulin-like growth factor system (IGF system, IGF signaling pathway) plays a pivotal role in regulating growth and development of various cells and tissues. In myocardium, the IGF system provides cardioprotective effects as well as participates in pathological processes. This review summarizes recent data on the role of IGF signaling in cardioprotection and pathogenesis of various cardiovascular diseases, as well as analyzes severity of these effects in various scenarios.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NMDA Receptors and Indices of Energy Metabolism in Erythrocytes: Missing Link to the Assessment of Efficiency of Oxygen Transport in Hepatic Encephalopathy. 红细胞中的 NMDA 受体和能量代谢指标:评估肝性脑病氧转运效率的缺失环节。
IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-01 DOI: 10.1134/S000629792408008X
Gubidat A Alilova, Lyudmila A Tikhonova, Elena A Kosenko

Hepatic encephalopathy (HE) is a neuropsychiatric syndrome that develops in patients with severe liver dysfunction and/or portocaval shunting. Despite more than a century of research into the relationship between liver damage and development of encephalopathy, pathogenetic mechanisms of hepatic encephalopathy have not yet been fully elucidated. It is generally recognized, however, that the main trigger of neurologic complications in hepatic encephalopathy is the neurotoxin ammonia/ammonium, concentration of which in the blood increases to toxic levels (hyperammonemia), when detoxification function of the liver is impaired. Freely penetrating into brain cells and affecting NMDA-receptor-mediated signaling, ammonia triggers a pathological cascade leading to the sharp inhibition of aerobic glucose metabolism, oxidative stress, brain hypoperfusion, nerve cell damage, and formation of neurological deficits. Brain hypoperfusion, in turn, could be due to the impaired oxygen transport function of erythrocytes, because of the disturbed energy metabolism that occurs in the membranes and inside erythrocytes and controls affinity of hemoglobin for oxygen, which determines the degree of oxygenation of blood and tissues. In our recent study, this causal relationship was confirmed and novel ammonium-induced pro-oxidant effect mediated by excessive activation of NMDA receptors leading to impaired oxygen transport function of erythrocytes was revealed. For a more complete evaluation of "erythrocytic" factors that diminish brain oxygenation and lead to encephalopathy, in this study, activity of the enzymes and concentration of metabolites of glycolysis and Rapoport-Lubering shunt, as well as morphological characteristics of erythrocytes from the rats with acute hyperammoniemia were determined. To elucidate the role of NMDA receptors in the above processes, MK-801, a non-competitive receptor antagonist, was used. Based on the obtained results it can be concluded that it is necessary to consider ammonium-induced morphofunctional disorders of erythrocytes and hemoglobinemia which can occur as a result of alterations in highly integrated networks of metabolic pathways may act as an additional systemic "erythrocytic" pathogenetic factor to prevent the onset and progression of cerebral hypoperfusion in hepatic encephalopathy accompanied by hyperammonemia.

肝性脑病(HE)是一种神经精神综合征,多发于严重肝功能异常和/或门腔静脉分流的患者。尽管一个多世纪以来人们一直在研究肝损伤与脑病发展之间的关系,但肝性脑病的发病机制尚未完全阐明。但普遍认为,肝性脑病神经系统并发症的主要诱因是神经毒素氨/铵,当肝脏解毒功能受损时,血液中的氨/铵浓度会升高到毒性水平(高氨血症)。氨可自由渗入脑细胞,影响 NMDA 受体介导的信号传导,引发病理级联反应,导致有氧葡萄糖代谢急剧抑制、氧化应激、脑灌注不足、神经细胞损伤和神经功能缺损的形成。而脑灌注不足又可能是由于红细胞的氧转运功能受损,因为红细胞膜和红细胞内部的能量代谢紊乱,控制着血红蛋白对氧的亲和力,而血红蛋白对氧的亲和力决定着血液和组织的含氧量。我们最近的研究证实了这一因果关系,并揭示了氨通过过度激活 NMDA 受体导致红细胞氧运输功能受损而产生的新的促氧化效应。为了更全面地评估导致脑供氧减少和脑病的 "红细胞 "因素,本研究测定了急性高氨血症大鼠体内糖酵解和拉波波特-卢伯林分流酶的活性、代谢产物的浓度以及红细胞的形态特征。为了阐明 NMDA 受体在上述过程中的作用,使用了非竞争性受体拮抗剂 MK-801。根据所获得的结果可以得出结论,有必要考虑氨诱导的红细胞形态功能紊乱和血红蛋白血症,它们可能是高度整合的新陈代谢途径网络发生改变的结果,可作为额外的全身性 "红细胞 "致病因素,以防止伴有高氨血症的肝性脑病的脑灌注不足的发生和发展。
{"title":"NMDA Receptors and Indices of Energy Metabolism in Erythrocytes: Missing Link to the Assessment of Efficiency of Oxygen Transport in Hepatic Encephalopathy.","authors":"Gubidat A Alilova, Lyudmila A Tikhonova, Elena A Kosenko","doi":"10.1134/S000629792408008X","DOIUrl":"10.1134/S000629792408008X","url":null,"abstract":"<p><p>Hepatic encephalopathy (HE) is a neuropsychiatric syndrome that develops in patients with severe liver dysfunction and/or portocaval shunting. Despite more than a century of research into the relationship between liver damage and development of encephalopathy, pathogenetic mechanisms of hepatic encephalopathy have not yet been fully elucidated. It is generally recognized, however, that the main trigger of neurologic complications in hepatic encephalopathy is the neurotoxin ammonia/ammonium, concentration of which in the blood increases to toxic levels (hyperammonemia), when detoxification function of the liver is impaired. Freely penetrating into brain cells and affecting NMDA-receptor-mediated signaling, ammonia triggers a pathological cascade leading to the sharp inhibition of aerobic glucose metabolism, oxidative stress, brain hypoperfusion, nerve cell damage, and formation of neurological deficits. Brain hypoperfusion, in turn, could be due to the impaired oxygen transport function of erythrocytes, because of the disturbed energy metabolism that occurs in the membranes and inside erythrocytes and controls affinity of hemoglobin for oxygen, which determines the degree of oxygenation of blood and tissues. In our recent study, this causal relationship was confirmed and novel ammonium-induced pro-oxidant effect mediated by excessive activation of NMDA receptors leading to impaired oxygen transport function of erythrocytes was revealed. For a more complete evaluation of \"erythrocytic\" factors that diminish brain oxygenation and lead to encephalopathy, in this study, activity of the enzymes and concentration of metabolites of glycolysis and Rapoport-Lubering shunt, as well as morphological characteristics of erythrocytes from the rats with acute hyperammoniemia were determined. To elucidate the role of NMDA receptors in the above processes, MK-801, a non-competitive receptor antagonist, was used. Based on the obtained results it can be concluded that it is necessary to consider ammonium-induced morphofunctional disorders of erythrocytes and hemoglobinemia which can occur as a result of alterations in highly integrated networks of metabolic pathways may act as an additional systemic \"erythrocytic\" pathogenetic factor to prevent the onset and progression of cerebral hypoperfusion in hepatic encephalopathy accompanied by hyperammonemia.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Modeling Methods in the Development of Affine and Specific Protein-Binding Agents. 开发亲和性和特异性蛋白质结合剂的分子建模方法。
IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-01 DOI: 10.1134/S0006297924080066
Shamsudin Sh Nasaev, Artem R Mukanov, Ivan V Mishkorez, Ivan I Kuznetsov, Iosif V Leibin, Vladislava A Dolgusheva, Gleb A Pavlyuk, Artem L Manasyan, Alexander V Veselovsky

High-affinity and specific agents are widely applied in various areas, including diagnostics, scientific research, and disease therapy (as drugs and drug delivery systems). It takes significant time to develop them. For this reason, development of high-affinity agents extensively utilizes computer methods at various stages for the analysis and modeling of these molecules. The review describes the main affinity and specific agents, such as monoclonal antibodies and their fragments, antibody mimetics, aptamers, and molecularly imprinted polymers. The methods of their obtaining as well as their main advantages and disadvantages are briefly described, with special attention focused on the molecular modeling methods used for their analysis and development.

高亲和性和特异性制剂被广泛应用于各个领域,包括诊断、科学研究和疾病治疗(作为药物和给药系统)。开发它们需要大量时间。因此,高亲和力药剂的开发在不同阶段广泛使用计算机方法对这些分子进行分析和建模。本综述介绍了主要的亲和剂和特异性制剂,如单克隆抗体及其片段、抗体模拟物、配合物和分子印迹聚合物。简要介绍了获得这些制剂的方法及其主要优缺点,并特别关注用于分析和开发这些制剂的分子建模方法。
{"title":"Molecular Modeling Methods in the Development of Affine and Specific Protein-Binding Agents.","authors":"Shamsudin Sh Nasaev, Artem R Mukanov, Ivan V Mishkorez, Ivan I Kuznetsov, Iosif V Leibin, Vladislava A Dolgusheva, Gleb A Pavlyuk, Artem L Manasyan, Alexander V Veselovsky","doi":"10.1134/S0006297924080066","DOIUrl":"https://doi.org/10.1134/S0006297924080066","url":null,"abstract":"<p><p>High-affinity and specific agents are widely applied in various areas, including diagnostics, scientific research, and disease therapy (as drugs and drug delivery systems). It takes significant time to develop them. For this reason, development of high-affinity agents extensively utilizes computer methods at various stages for the analysis and modeling of these molecules. The review describes the main affinity and specific agents, such as monoclonal antibodies and their fragments, antibody mimetics, aptamers, and molecularly imprinted polymers. The methods of their obtaining as well as their main advantages and disadvantages are briefly described, with special attention focused on the molecular modeling methods used for their analysis and development.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CYP74B34 Enzyme from Carrot (Daucus carota) with a Double Hydroperoxide Lyase/Epoxyalcohol Synthase Activity: Identification and Biochemical Properties. 胡萝卜(Daucus carota)中具有双过氧化氢裂解酶/环氧醇合成酶活性的 CYP74B34 酶:鉴定和生化特性。
IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-01 DOI: 10.1134/S0006297924080108
Yana Y Toporkova, Svetlana S Gorina, Tatiana M Iljina, Natalia V Lantsova, Alexander N Grechkin

The lipoxygenase cascade in plants is a source of oxylipins (oxidized fatty acid derivatives), which play an important role in regulatory processes and formation of plant response to stress factors. Some of the most common enzymes of the lipoxygenase cascade are 13-specific hydroperoxide lyases (HPLs, also called hemiacetal synthases) of the CYP74B subfamily. In this work, we identified and cloned the CYP74B34 gene from carrot (Daucus carota L.) and described the biochemical properties of the corresponding recombinant enzyme. The CYP74B34 enzyme was active towards 9- and 13-hydroperoxides of linoleic (9-HPOD and 13-HPOD, respectively) and α-linolenic (9-HPOT and 13-HPOT, respectively) acids. CYP74B34 specifically converted 9-HPOT and 13-HPOT into aldo acids (HPL products). The transformation of 13-HPOD led to the formation of aldo acids and epoxyalcohols [products of epoxyalcohol synthase (EAS) activity] as major and minor products, respectively. At the same time, conversion of 9-HPOD resulted in the formation of epoxyalcohols as the main products and aldo acids as the minor ones. Therefore, CYP74B34 is the first enzyme with a double HPL/EAS activity described in carrot. The presence of these catalytic activities was confirmed by analysis of the oxylipin profiles for the roots from young seedlings and mature plants. In addition, we substituted amino acid residues in one of the catalytically essential sites of the CYP74B34 and CYP74B33 proteins and investigated the properties of the obtained mutant enzymes.

植物中的脂氧合酶级联是氧化脂素(氧化脂肪酸衍生物)的来源之一,氧化脂素在调节过程和形成植物对胁迫因子的反应中发挥着重要作用。脂氧合酶级联中最常见的一些酶是 CYP74B 亚家族的 13 种特异性过氧化氢裂解酶(HPLs,又称半缩醛合成酶)。在这项工作中,我们从胡萝卜(Daucus carota L.)中鉴定并克隆了 CYP74B34 基因,并描述了相应重组酶的生化特性。CYP74B34酶对亚油酸(分别为9-HPOD和13-HPOD)和α-亚麻酸(分别为9-HPOT和13-HPOT)的9-和13-氢过氧化物具有活性。CYP74B34 专门将 9-HPOT 和 13-HPOT 转化为醛酸(HPL 产物)。13-HPOD 的转化导致形成醛酸和环氧醇(环氧醇合成酶(EAS)活性产物),分别作为主要和次要产物。与此同时,9-HPOD 的转化会形成主要产物环氧醇和次要产物醛酸。因此,CYP74B34 是胡萝卜中第一个具有 HPL/EAS 双重活性的酶。通过分析幼苗和成熟植株根部的草脂素图谱,证实了这些催化活性的存在。此外,我们还取代了 CYP74B34 和 CYP74B33 蛋白催化必需位点中的一个氨基酸残基,并研究了所获得突变体酶的特性。
{"title":"CYP74B34 Enzyme from Carrot (<i>Daucus carota</i>) with a Double Hydroperoxide Lyase/Epoxyalcohol Synthase Activity: Identification and Biochemical Properties.","authors":"Yana Y Toporkova, Svetlana S Gorina, Tatiana M Iljina, Natalia V Lantsova, Alexander N Grechkin","doi":"10.1134/S0006297924080108","DOIUrl":"https://doi.org/10.1134/S0006297924080108","url":null,"abstract":"<p><p>The lipoxygenase cascade in plants is a source of oxylipins (oxidized fatty acid derivatives), which play an important role in regulatory processes and formation of plant response to stress factors. Some of the most common enzymes of the lipoxygenase cascade are 13-specific hydroperoxide lyases (HPLs, also called hemiacetal synthases) of the CYP74B subfamily. In this work, we identified and cloned the <i>CYP74B34</i> gene from carrot (<i>Daucus carota</i> L.) and described the biochemical properties of the corresponding recombinant enzyme. The CYP74B34 enzyme was active towards 9- and 13-hydroperoxides of linoleic (9-HPOD and 13-HPOD, respectively) and α-linolenic (9-HPOT and 13-HPOT, respectively) acids. CYP74B34 specifically converted 9-HPOT and 13-HPOT into aldo acids (HPL products). The transformation of 13-HPOD led to the formation of aldo acids and epoxyalcohols [products of epoxyalcohol synthase (EAS) activity] as major and minor products, respectively. At the same time, conversion of 9-HPOD resulted in the formation of epoxyalcohols as the main products and aldo acids as the minor ones. Therefore, CYP74B34 is the first enzyme with a double HPL/EAS activity described in carrot. The presence of these catalytic activities was confirmed by analysis of the oxylipin profiles for the roots from young seedlings and mature plants. In addition, we substituted amino acid residues in one of the catalytically essential sites of the CYP74B34 and CYP74B33 proteins and investigated the properties of the obtained mutant enzymes.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to: Pharmacological Doses of Thiamine Benefit Patients with the Charcot-Marie-Tooth Neuropathy by Changing Thiamine Diphosphate Levels and Affecting Regulation of Thiamine-Dependent Enzymes. 勘误:药理剂量的硫胺素通过改变二磷酸硫胺素水平和影响硫胺素依赖酶的调节而使夏科-玛丽-牙神经病患者受益。
IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-01 DOI: 10.1134/S000629792408011X
Artem V Artiukhov, Olga N Solovjeva, Natalia V Balashova, Olga P Sidorova, Anastasia V Graf, Victoria I Bunik
{"title":"Erratum to: Pharmacological Doses of Thiamine Benefit Patients with the Charcot-Marie-Tooth Neuropathy by Changing Thiamine Diphosphate Levels and Affecting Regulation of Thiamine-Dependent Enzymes.","authors":"Artem V Artiukhov, Olga N Solovjeva, Natalia V Balashova, Olga P Sidorova, Anastasia V Graf, Victoria I Bunik","doi":"10.1134/S000629792408011X","DOIUrl":"https://doi.org/10.1134/S000629792408011X","url":null,"abstract":"","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic Phenomenon of Paramutation in Plants and Animals. 动植物副变异的表观遗传现象。
IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-01 DOI: 10.1134/S0006297924080054
Dina A Kulikova, Alina V Bespalova, Elena S Zelentsova, Mikhail B Evgen'ev, Sergei Yu Funikov

The phenomenon of paramutation describes the interaction between two alleles, in which one allele initiates inherited epigenetic conversion of another allele without affecting the DNA sequence. Epigenetic transformations due to paramutation are accompanied by the change in DNA and/or histone methylation patterns, affecting gene expression. Studies of paramutation in plants and animals have identified small non-coding RNAs as the main effector molecules required for the initiation of epigenetic changes in gene loci. Due to the fact that small non-coding RNAs can be transmitted across generations, the paramutation effect can be inherited and maintained in a population. In this review, we will systematically analyze examples of paramutation in different living systems described so far, highlighting common and different molecular and genetic aspects of paramutation between organisms, and considering the role of this phenomenon in evolution.

副变异现象描述了两个等位基因之间的相互作用,其中一个等位基因在不影响 DNA 序列的情况下启动另一个等位基因的遗传表观遗传转换。副变异导致的表观遗传转化伴随着 DNA 和/或组蛋白甲基化模式的改变,从而影响基因表达。对动植物副变异的研究发现,小的非编码 RNA 是启动基因位点表观遗传变化所需的主要效应分子。由于小非编码 RNA 可以跨代传递,因此参变效应可以在种群中遗传和维持。在这篇综述中,我们将系统分析迄今为止描述的不同生物系统中的参数突变实例,强调不同生物之间参数突变的分子和遗传方面的共性和差异,并考虑这种现象在进化中的作用。
{"title":"Epigenetic Phenomenon of Paramutation in Plants and Animals.","authors":"Dina A Kulikova, Alina V Bespalova, Elena S Zelentsova, Mikhail B Evgen'ev, Sergei Yu Funikov","doi":"10.1134/S0006297924080054","DOIUrl":"https://doi.org/10.1134/S0006297924080054","url":null,"abstract":"<p><p>The phenomenon of paramutation describes the interaction between two alleles, in which one allele initiates inherited epigenetic conversion of another allele without affecting the DNA sequence. Epigenetic transformations due to paramutation are accompanied by the change in DNA and/or histone methylation patterns, affecting gene expression. Studies of paramutation in plants and animals have identified small non-coding RNAs as the main effector molecules required for the initiation of epigenetic changes in gene loci. Due to the fact that small non-coding RNAs can be transmitted across generations, the paramutation effect can be inherited and maintained in a population. In this review, we will systematically analyze examples of paramutation in different living systems described so far, highlighting common and different molecular and genetic aspects of paramutation between organisms, and considering the role of this phenomenon in evolution.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functional Analysis of the Channelrhodopsin Genes from the Green Algae of the White Sea Basin. 白海盆地绿藻中的通道荧光素基因的功能分析。
IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-01 DOI: 10.1134/S0006297924080030
Olga V Karpova, Elizaveta N Vinogradova, Anastasiya M Moisenovich, Oksana B Pustovit, Alla A Ramonova, Denis V Abramochkin, Elena S Lobakova

Optogenetics, the method of light-controlled regulation of cellular processes is based on the use of the channelrhodopsins that directly generate photoinduced currents. Most of the channelrhodopsin genes have been identified in the green microalgae Chlorophyta, and the demand for increasing the number of functionally characterized channelrhodopsins and the diversity of their photochemical parameters keeps growing. We performed the expression analysis of cation channelrhodopsin (CCR) genes in natural isolates of microalgae of the genera Haematococcus and Bracteacoccus from the unique Arctic Circle region. The identified full-length CCR transcript of H. lacustris is the product of alternative splicing and encodes the Hl98CCR2 protein with no photochemical activity. The 5'-partial fragment of the B. aggregatus CCR transcript encodes the Ba34CCR protein containing a conserved TM1-TM7 membrane domain and a short cytosolic fragment. Upon heterologous expression of the TM1-TM7 fragment in CHO-K1 cell culture, light-dependent current generation was observed with the parameters corresponding to those of the CCR. The first discovered functional channelrhodopsin of Bracteacoccus has no close CCR homologues and may be of interest as a candidate for optogenetics.

光遗传学(Optogenetics)是一种通过光控调节细胞过程的方法,其基础是利用直接产生光诱导电流的通道闪烁蛋白。目前已在绿色微藻类叶绿藻中发现了大部分通道闪烁蛋白基因,而且对增加具有功能特征的通道闪烁蛋白数量及其光化学参数多样性的需求也在不断增长。我们对来自北极圈地区的血球藻属(Haematococcus)和白桦球藻属(Bracteacoccus)微藻天然分离物中的阳离子通道荧光素(CCR)基因进行了表达分析。已确定的 H. lacustris 的全长 CCR 转录本是替代剪接的产物,编码没有光化学活性的 Hl98CCR2 蛋白。B. aggregatus CCR 转录本的 5'-partial 片段编码 Ba34CCR 蛋白,其中包含一个保守的 TM1-TM7 膜结构域和一个短的细胞膜片段。在 CHO-K1 细胞培养中异源表达 TM1-TM7 片段后,观察到了光依赖性电流产生,其参数与 CCR 的参数一致。首次发现的白racteacoccus 功能性通道视蛋白没有近似的 CCR 同源物,可能是光遗传学的候选物质。
{"title":"Functional Analysis of the Channelrhodopsin Genes from the Green Algae of the White Sea Basin.","authors":"Olga V Karpova, Elizaveta N Vinogradova, Anastasiya M Moisenovich, Oksana B Pustovit, Alla A Ramonova, Denis V Abramochkin, Elena S Lobakova","doi":"10.1134/S0006297924080030","DOIUrl":"https://doi.org/10.1134/S0006297924080030","url":null,"abstract":"<p><p>Optogenetics, the method of light-controlled regulation of cellular processes is based on the use of the channelrhodopsins that directly generate photoinduced currents. Most of the channelrhodopsin genes have been identified in the green microalgae Chlorophyta, and the demand for increasing the number of functionally characterized channelrhodopsins and the diversity of their photochemical parameters keeps growing. We performed the expression analysis of cation channelrhodopsin (CCR) genes in natural isolates of microalgae of the genera <i>Haematococcus</i> and <i>Bracteacoccus</i> from the unique Arctic Circle region. The identified full-length CCR transcript of <i>H. lacustris</i> is the product of alternative splicing and encodes the Hl98CCR2 protein with no photochemical activity. The 5'-partial fragment of the <i>B. aggregatus</i> CCR transcript encodes the Ba34CCR protein containing a conserved TM1-TM7 membrane domain and a short cytosolic fragment. Upon heterologous expression of the TM1-TM7 fragment in CHO-K1 cell culture, light-dependent current generation was observed with the parameters corresponding to those of the CCR. The first discovered functional channelrhodopsin of <i>Bracteacoccus</i> has no close CCR homologues and may be of interest as a candidate for optogenetics.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biochemistry (Moscow)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1