{"title":"Advancements in Cancer Therapy: Mycoviruses and Their Oncolytic Potential.","authors":"Kannan Kamala, Dhanraj Ganapathy, Pitchiah Sivaperumal","doi":"10.1007/s12013-024-01608-y","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in cancer research focus on reducing treatment side effects while enhancing efficacy against medication resistance and tumor antigen detection. Genetic therapies utilizing microbes like bacteria, fungi, and viruses have garnered attention, with mycoviruses emerging as promising candidates. Particularly, the smallest fungal virus, Myco-phage, exhibits oncolytic properties by lysing cancer cells in the mouth, oral cavity, head, and neck without adverse effects. Genetically Modified Myco-phage (GmMP) adapts quickly to target cancer cells through cell membrane damage, inducing apoptosis and dendritic cell activation. Additionally, GmMP inhibits angiogenesis and modulates immune responses via CAR cells and immune checkpoints, potentially transforming cancer treatment paradigms with enhanced specificity and efficacy.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01608-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in cancer research focus on reducing treatment side effects while enhancing efficacy against medication resistance and tumor antigen detection. Genetic therapies utilizing microbes like bacteria, fungi, and viruses have garnered attention, with mycoviruses emerging as promising candidates. Particularly, the smallest fungal virus, Myco-phage, exhibits oncolytic properties by lysing cancer cells in the mouth, oral cavity, head, and neck without adverse effects. Genetically Modified Myco-phage (GmMP) adapts quickly to target cancer cells through cell membrane damage, inducing apoptosis and dendritic cell activation. Additionally, GmMP inhibits angiogenesis and modulates immune responses via CAR cells and immune checkpoints, potentially transforming cancer treatment paradigms with enhanced specificity and efficacy.
癌症治疗的进展:霉菌病毒及其肿瘤溶解潜力》(Mycoviruses and Their Oncolytic Potential)。
癌症研究的最新进展侧重于减少治疗副作用,同时提高抗药性和肿瘤抗原检测的疗效。利用细菌、真菌和病毒等微生物的基因疗法备受关注,其中霉菌病毒是很有前途的候选药物。尤其是最小的真菌病毒--噬菌体(Myco-phage),具有溶瘤特性,能溶解口腔、口腔、头部和颈部的癌细胞,且无不良反应。基因改良型噬菌体(GmMP)可通过细胞膜损伤、诱导细胞凋亡和树突状细胞活化,迅速适应靶向癌细胞。此外,GmMP 还能抑制血管生成,并通过 CAR 细胞和免疫检查点调节免疫反应,从而提高特异性和疗效,改变癌症治疗模式。
期刊介绍:
Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems
The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized.
Examples of subject areas that CBB publishes are:
· biochemical and biophysical aspects of cell structure and function;
· interactions of cells and their molecular/macromolecular constituents;
· innovative developments in genetic and biomolecular engineering;
· computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies;
· photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design
For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.