{"title":"Evaluation of Xihuang Pill in inducing pyroptosis in glioma cells through modulation of miR-21-5p.","authors":"Ning Tang, Nuojin Geng, Xinhua Zhu","doi":"10.1007/s13205-024-04148-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to elucidate the mechanism by which Xihuang Pill induces pyroptosis in glioma cells via the regulation of miR-21-5p. Human glioma cell lines U-87 and LN-229 were used as experimental models to assess the effects of Xihuang Pill on glioma pyroptosis. Cells were incubated with Xihuang Pill extract at concentrations of 7.5, 15, and 30 µg/mL for 24 h, alongside transfection with miR-21-5p mimic, an overexpression vector for STAT3, or incubation with 50 µg/mL of the STAT3 activator Colivelin for 4 h. Cell viability was measured using the CCK-8 assay, apoptosis was detected by flow cytometry, and expression levels of p-STAT3/STAT3 and pyroptosis-related proteins were determined by Western Blot. Additionally, cleaved caspase-1 was assessed by immunofluorescence, miR-21-5p expression by qRT-PCR, and STAT3 binding to the miR-21-5p promoter region by ChIP and dual-luciferase reporter assays. Results showed that Xihuang Pill significantly reduced cell viability, increased apoptosis, and upregulated the expression of pyroptosis-related proteins such as NLRP3, IL-1β, cleaved caspase-1, and GSDMD-N, while reducing p-STAT3/STAT3 and miR-21-5p levels (P < 0.05). Xihuang Pill inhibited STAT3 activation, which modulated miR-21-5p expression by binding to its promoter region. Co-transfection with miR-21-5p mimic reversed the effect of Xihuang Pill on glioma pyroptosis (P < 0.05). In conclusion, Xihuang Pill promotes glioma cell pyroptosis through the STAT3/miR-21-5p pathway.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"14 12","pages":"295"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550298/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04148-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to elucidate the mechanism by which Xihuang Pill induces pyroptosis in glioma cells via the regulation of miR-21-5p. Human glioma cell lines U-87 and LN-229 were used as experimental models to assess the effects of Xihuang Pill on glioma pyroptosis. Cells were incubated with Xihuang Pill extract at concentrations of 7.5, 15, and 30 µg/mL for 24 h, alongside transfection with miR-21-5p mimic, an overexpression vector for STAT3, or incubation with 50 µg/mL of the STAT3 activator Colivelin for 4 h. Cell viability was measured using the CCK-8 assay, apoptosis was detected by flow cytometry, and expression levels of p-STAT3/STAT3 and pyroptosis-related proteins were determined by Western Blot. Additionally, cleaved caspase-1 was assessed by immunofluorescence, miR-21-5p expression by qRT-PCR, and STAT3 binding to the miR-21-5p promoter region by ChIP and dual-luciferase reporter assays. Results showed that Xihuang Pill significantly reduced cell viability, increased apoptosis, and upregulated the expression of pyroptosis-related proteins such as NLRP3, IL-1β, cleaved caspase-1, and GSDMD-N, while reducing p-STAT3/STAT3 and miR-21-5p levels (P < 0.05). Xihuang Pill inhibited STAT3 activation, which modulated miR-21-5p expression by binding to its promoter region. Co-transfection with miR-21-5p mimic reversed the effect of Xihuang Pill on glioma pyroptosis (P < 0.05). In conclusion, Xihuang Pill promotes glioma cell pyroptosis through the STAT3/miR-21-5p pathway.
3 BiotechAgricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍:
3 Biotech publishes the results of the latest research related to the study and application of biotechnology to:
- Medicine and Biomedical Sciences
- Agriculture
- The Environment
The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.