Chrysanthos Stergiopoulos, Fotios Tsopelas, Maria Ochsenkühn-Petropoulou, Klara Valko
{"title":"Predicting the acute aquatic toxicity of organic UV filters used in cosmetic formulations.","authors":"Chrysanthos Stergiopoulos, Fotios Tsopelas, Maria Ochsenkühn-Petropoulou, Klara Valko","doi":"10.5599/admet.2364","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Organic UV filters are commonly used in sunscreen and cosmetic formulations to protect against harmful UV radiation. However, concerns have emerged over their potential toxic effects on aquatic organisms. This study aims to investigate the acute aquatic toxicity of 13 organic UV filters and determine whether phospholipid binding, measured through biomimetic chromatographic methods, is a better predictor of toxicity than the traditionally used octanol-water partition coefficient (log <i>P</i>).</p><p><strong>Experimental approach: </strong>The chromatographic retention of the 13 UV filters was measured on an immobilized artificial membrane (IAM) stationary phase to assess phospholipid binding. These measurements were then applied to previously established predictive models, originally developed for pharmaceutical compounds, to estimate acute aquatic toxicity endpoints of 48-hour LC<sub>50</sub> for fish and the 48-hour EC<sub>50</sub> (immobilization) for Daphnia magna.</p><p><strong>Key results: </strong>Phospholipid binding was found to be a more reliable predictor of the acute aquatic toxicity of UV filters compared to log <i>P</i>. The toxicity was primarily driven by lipophilicity and charge, with negatively charged compounds exhibiting lower toxicity.</p><p><strong>Conclusion: </strong>The study demonstrates that phospholipid binding is a better descriptor of UV filter toxicity than log <i>P</i>, providing a more accurate method for predicting the environmental risk of these compounds. This insight can guide the development of more environmentally friendly sunscreens by reducing the use of highly lipophilic and positively charged compounds, thus lowering their aquatic toxicity.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":"12 5","pages":"781-796"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542717/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADMET and DMPK","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/admet.2364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background and purpose: Organic UV filters are commonly used in sunscreen and cosmetic formulations to protect against harmful UV radiation. However, concerns have emerged over their potential toxic effects on aquatic organisms. This study aims to investigate the acute aquatic toxicity of 13 organic UV filters and determine whether phospholipid binding, measured through biomimetic chromatographic methods, is a better predictor of toxicity than the traditionally used octanol-water partition coefficient (log P).
Experimental approach: The chromatographic retention of the 13 UV filters was measured on an immobilized artificial membrane (IAM) stationary phase to assess phospholipid binding. These measurements were then applied to previously established predictive models, originally developed for pharmaceutical compounds, to estimate acute aquatic toxicity endpoints of 48-hour LC50 for fish and the 48-hour EC50 (immobilization) for Daphnia magna.
Key results: Phospholipid binding was found to be a more reliable predictor of the acute aquatic toxicity of UV filters compared to log P. The toxicity was primarily driven by lipophilicity and charge, with negatively charged compounds exhibiting lower toxicity.
Conclusion: The study demonstrates that phospholipid binding is a better descriptor of UV filter toxicity than log P, providing a more accurate method for predicting the environmental risk of these compounds. This insight can guide the development of more environmentally friendly sunscreens by reducing the use of highly lipophilic and positively charged compounds, thus lowering their aquatic toxicity.
期刊介绍:
ADMET and DMPK is an open access journal devoted to the rapid dissemination of new and original scientific results in all areas of absorption, distribution, metabolism, excretion, toxicology and pharmacokinetics of drugs. ADMET and DMPK publishes the following types of contributions: - Original research papers - Feature articles - Review articles - Short communications and Notes - Letters to Editors - Book reviews The scope of the Journal involves, but is not limited to, the following areas: - physico-chemical properties of drugs and methods of their determination - drug permeabilities - drug absorption - drug-drug, drug-protein, drug-membrane and drug-DNA interactions - chemical stability and degradations of drugs - instrumental methods in ADMET - drug metablic processes - routes of administration and excretion of drug - pharmacokinetic/pharmacodynamic study - quantitative structure activity/property relationship - ADME/PK modelling - Toxicology screening - Transporter identification and study