{"title":"Risk factor analysis and predictive model construction for bone metastasis in newly diagnosed malignant tumor patients.","authors":"Chengru Hu, Jing Wu, Zhipei Duan, Jing Qian, Jing Zhu","doi":"10.62347/MPEV9272","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To identify risk factors for bone metastasis in patients with newly diagnosed malignant tumor and to develop a prediction model.</p><p><strong>Methods: </strong>Clinical data from 232 patients with newly diagnosed malignant tumors were analyzed to screen for risk factors associated with bone metastasis. A nomogram prediction model was constructed using R software. The model's performance was evaluated using Receiver Operating Characteristic (<i>ROC</i>) analysis, Bootstrap sampling, and Decision Curve Analysis (<i>DCA</i>).</p><p><strong>Results: </strong>The incidence of bone metastasis in the 232 cases with newly diagnosed malignant tumors was 21.98% (51/232). Multivariate logistic regression analysis revealed that tumor staging III-IV, lymph node metastasis, high Eastern Cancer Collaboration Group Physical Status (ECOG-PS) score, high alkaline phosphatase (ALP) expression, and high SII index were risk factors for bone metastasis at initial diagnosis (all <i>P</i><0.05). The area under the curve (AUC) of the nomogram model was 0.893. Bootstrap sampling validation showed a small error of 0.017 between predicted and actual probabilities. DCA supported the utility of the model in clinical practice.</p><p><strong>Conclusion: </strong>Bone metastasis in newly diagnosed malignant tumors is associated with advanced tumor staging, lymph node metastasis, high ECOG-PS score, elevated ALP expression, and a high SII index. A nomogram model based on these factors can effectively predict the risk of bone metastasis in these patients.</p>","PeriodicalId":7731,"journal":{"name":"American journal of translational research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558386/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of translational research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/MPEV9272","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To identify risk factors for bone metastasis in patients with newly diagnosed malignant tumor and to develop a prediction model.
Methods: Clinical data from 232 patients with newly diagnosed malignant tumors were analyzed to screen for risk factors associated with bone metastasis. A nomogram prediction model was constructed using R software. The model's performance was evaluated using Receiver Operating Characteristic (ROC) analysis, Bootstrap sampling, and Decision Curve Analysis (DCA).
Results: The incidence of bone metastasis in the 232 cases with newly diagnosed malignant tumors was 21.98% (51/232). Multivariate logistic regression analysis revealed that tumor staging III-IV, lymph node metastasis, high Eastern Cancer Collaboration Group Physical Status (ECOG-PS) score, high alkaline phosphatase (ALP) expression, and high SII index were risk factors for bone metastasis at initial diagnosis (all P<0.05). The area under the curve (AUC) of the nomogram model was 0.893. Bootstrap sampling validation showed a small error of 0.017 between predicted and actual probabilities. DCA supported the utility of the model in clinical practice.
Conclusion: Bone metastasis in newly diagnosed malignant tumors is associated with advanced tumor staging, lymph node metastasis, high ECOG-PS score, elevated ALP expression, and a high SII index. A nomogram model based on these factors can effectively predict the risk of bone metastasis in these patients.