Paul Y. Kim , Michelle Vong , Dani Lee , Chengliang Wu
{"title":"Development of an assay to quantify tranexamic acid levels in plasma","authors":"Paul Y. Kim , Michelle Vong , Dani Lee , Chengliang Wu","doi":"10.1016/j.ab.2024.115714","DOIUrl":null,"url":null,"abstract":"<div><div>Dysregulations of blood clot breakdown (fibrinolysis) during vascular trauma can lead to excessive blood loss. Tranexamic acid (TXA) is an inhibitor of fibrinolysis that works by blocking the interaction between plasminogen and fibrin degradation products (FDPs) – a key step in fibrinolysis. Despite the widespread usage, there are no tests available in a clinical setting to monitor TXA levels. We developed a fluorescence resonance energy transfer (FRET)-based assay to quantify TXA concentrations in plasma by using 1) fluorescently labeled plasminogen, and 2) FDPs labeled with a fluorescence quencher. Once plasminogen binds the FDPs, the fluorescent signal is quenched. TXA causes plasminogen to dissociate from the FDPs, thus increasing fluorescence signal in a dose-dependent manner. The dose response was sensitive between 1 and 100 μM (0.16 and 15.7 mg/L). The intraassay and interassay variabilities were determined to be 5.7 % and 3.0 %, respectively. Limit of detection was estimated to be 0.28 μM (0.044 mg/L). When tested for measuring known levels of TXA added to plasma samples, the ratio between measured and expected TXA concentration was 1.0151. Our study demonstrates a novel assay that can rapidly quantify TXA concentrations in plasma samples, thus demonstrating its potential as an in-hospital tool.</div></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"697 ","pages":"Article 115714"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269724002586","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Dysregulations of blood clot breakdown (fibrinolysis) during vascular trauma can lead to excessive blood loss. Tranexamic acid (TXA) is an inhibitor of fibrinolysis that works by blocking the interaction between plasminogen and fibrin degradation products (FDPs) – a key step in fibrinolysis. Despite the widespread usage, there are no tests available in a clinical setting to monitor TXA levels. We developed a fluorescence resonance energy transfer (FRET)-based assay to quantify TXA concentrations in plasma by using 1) fluorescently labeled plasminogen, and 2) FDPs labeled with a fluorescence quencher. Once plasminogen binds the FDPs, the fluorescent signal is quenched. TXA causes plasminogen to dissociate from the FDPs, thus increasing fluorescence signal in a dose-dependent manner. The dose response was sensitive between 1 and 100 μM (0.16 and 15.7 mg/L). The intraassay and interassay variabilities were determined to be 5.7 % and 3.0 %, respectively. Limit of detection was estimated to be 0.28 μM (0.044 mg/L). When tested for measuring known levels of TXA added to plasma samples, the ratio between measured and expected TXA concentration was 1.0151. Our study demonstrates a novel assay that can rapidly quantify TXA concentrations in plasma samples, thus demonstrating its potential as an in-hospital tool.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.