Kai Wang, Lu Zhang, Hualiang Liang, Mingchun Ren, Haifeng Mi, Dongyu Huang, Jiaze Gu
{"title":"Effects of Dietary Ferroporphyrin Supplementation on Growth Performance, Antioxidant Capacity, Immune Response, and Oxygen-Carrying Capacity in Gibel Carp (<i>Carassius auratus gibelio</i>).","authors":"Kai Wang, Lu Zhang, Hualiang Liang, Mingchun Ren, Haifeng Mi, Dongyu Huang, Jiaze Gu","doi":"10.3390/ani14213104","DOIUrl":null,"url":null,"abstract":"<p><p>An eight-week experiment was conducted to study the effects of dietary ferroporphyrin (FPR) supplementation on growth performance, antioxidant capacity, immune response, and oxygen-carrying capacity in gibel carp. The results demonstrated that the addition of FPR increased the moisture content of the whole fish body. Supplementation with 0.01% FPR significantly increased the plasma albumin (ALB), total protein (TP), and total cholesterol (TC) contents. The addition of 0.03% and 0.04% FPR significantly increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, respectively, while the glucose (GLU), TC, and total triglyceride (TG) levels showed opposite trends. In terms of antioxidant capacity, the 0.03% and 0.04% dietary FPR supplementation increased malondialdehyde (MDA) levels. The activity of glutathione peroxidase (GPx) exhibited an opposite trend to MDA levels. The supplementation of 0.03% of FPR resulted in a notable reduction in mRNA expression levels of <i>nrf2</i>, <i>keap1</i>, <i>cat</i>, and <i>gpx.</i> Regarding immunity, 0.01% FPR supplementation down-regulated the expression levels of <i>il-1β</i> mRNA, while 0.02% FPR down-regulated <i>il-6</i> and <i>nf-κb</i> expression levels. Furthermore, 0.02% FPR supplementation significantly up-regulated the <i>il-10</i> mRNA expression levels. In terms of oxygen-carrying capacity, high levels of FPR (0.03% and 0.04%) were found to influence the <i>epo</i> and <i>vegf</i> mRNA expression. In conclusion, the incorporation of dietary 0.01-0.02% FPR improved the immune system of gibel carp without affecting their antioxidant and oxygen-carrying capacity. However, supplementation with higher levels of FPR (0.03-0.04%) led to decreased antioxidant and oxygen-carrying capacity.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"14 21","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544878/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani14213104","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
An eight-week experiment was conducted to study the effects of dietary ferroporphyrin (FPR) supplementation on growth performance, antioxidant capacity, immune response, and oxygen-carrying capacity in gibel carp. The results demonstrated that the addition of FPR increased the moisture content of the whole fish body. Supplementation with 0.01% FPR significantly increased the plasma albumin (ALB), total protein (TP), and total cholesterol (TC) contents. The addition of 0.03% and 0.04% FPR significantly increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, respectively, while the glucose (GLU), TC, and total triglyceride (TG) levels showed opposite trends. In terms of antioxidant capacity, the 0.03% and 0.04% dietary FPR supplementation increased malondialdehyde (MDA) levels. The activity of glutathione peroxidase (GPx) exhibited an opposite trend to MDA levels. The supplementation of 0.03% of FPR resulted in a notable reduction in mRNA expression levels of nrf2, keap1, cat, and gpx. Regarding immunity, 0.01% FPR supplementation down-regulated the expression levels of il-1β mRNA, while 0.02% FPR down-regulated il-6 and nf-κb expression levels. Furthermore, 0.02% FPR supplementation significantly up-regulated the il-10 mRNA expression levels. In terms of oxygen-carrying capacity, high levels of FPR (0.03% and 0.04%) were found to influence the epo and vegf mRNA expression. In conclusion, the incorporation of dietary 0.01-0.02% FPR improved the immune system of gibel carp without affecting their antioxidant and oxygen-carrying capacity. However, supplementation with higher levels of FPR (0.03-0.04%) led to decreased antioxidant and oxygen-carrying capacity.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).