Nancy Ferrentino, Taha Behroozi Kohlan, Shokoufeh Mehrtashfar, Anna Finne-Wistrand, Daniela Pappalardo
{"title":"Dual-Responsive Nanoparticles for Smart Drug Delivery: A NIR Light-Sensitive and Redox-Reactive PEG-PCL-Based System.","authors":"Nancy Ferrentino, Taha Behroozi Kohlan, Shokoufeh Mehrtashfar, Anna Finne-Wistrand, Daniela Pappalardo","doi":"10.1021/acs.biomac.4c00889","DOIUrl":null,"url":null,"abstract":"<p><p>Stimuli-responsive polymeric nanoparticles (NPs) can serve as smart drug delivery systems (DDSs) by triggering drug release upon external or internal stimuli. A dual-responsive DDS made of a triblock poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-SS-PEG-SS-PCL) copolymer, bearing disulfide bonds between PCL and PEG, was synthesized. The copolymer was functionalized with coumarin and sensitive to near-infrared (NIR) light irradiation, while the S-S bonds could be cleaved by GSH (10 mM). Characterization was achieved by nuclear magnetic resonance, size exclusion chromatography, and Fourier transform infrared analyses. Nile Red (NR)-loaded NPs were prepared through self-assembly of the copolymer in water and analyzed by dynamic light scattering and field-emission scanning electron microscopy. The NR release upon ultraviolet (UV)/NIR light irradiation as well as by GSH concentrations was monitored by using fluorescence spectroscopy, while simultaneous exposure to UV/NIR light and intracellular GSH concentration led to faster NR release. AlamarBlue assay showed satisfactory cell viability of the NR-loaded NPs, while their cellular uptake in human dermal fibroblast cells was investigated by fluorescence microscopy and fluorescence emission measurements.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c00889","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Stimuli-responsive polymeric nanoparticles (NPs) can serve as smart drug delivery systems (DDSs) by triggering drug release upon external or internal stimuli. A dual-responsive DDS made of a triblock poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-SS-PEG-SS-PCL) copolymer, bearing disulfide bonds between PCL and PEG, was synthesized. The copolymer was functionalized with coumarin and sensitive to near-infrared (NIR) light irradiation, while the S-S bonds could be cleaved by GSH (10 mM). Characterization was achieved by nuclear magnetic resonance, size exclusion chromatography, and Fourier transform infrared analyses. Nile Red (NR)-loaded NPs were prepared through self-assembly of the copolymer in water and analyzed by dynamic light scattering and field-emission scanning electron microscopy. The NR release upon ultraviolet (UV)/NIR light irradiation as well as by GSH concentrations was monitored by using fluorescence spectroscopy, while simultaneous exposure to UV/NIR light and intracellular GSH concentration led to faster NR release. AlamarBlue assay showed satisfactory cell viability of the NR-loaded NPs, while their cellular uptake in human dermal fibroblast cells was investigated by fluorescence microscopy and fluorescence emission measurements.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.