Didi Liu, Yue Xue, Dan Ding, Bojing Zhu, Jiechen Shen, Zhehui Jin, Shisheng Sun
{"title":"Distinct <i>O</i>-Acetylation Patterns of Serum Glycoproteins among Humans, Mice, and Rats.","authors":"Didi Liu, Yue Xue, Dan Ding, Bojing Zhu, Jiechen Shen, Zhehui Jin, Shisheng Sun","doi":"10.1021/acs.jproteome.4c00653","DOIUrl":null,"url":null,"abstract":"<p><p><i>O</i>-Acetylation is a significant chemical modification of sialic acids on glycoproteins with diverse biological functions. As two important animal models, mice and rats have been widely used for various biomedical studies. In this study, we show that the sialic acid types and their <i>O</i>-acetylation patterns have large differences among serum glycoproteins of humans, rats, and mice. Based on intact <i>N</i>-glycopeptide analyses, all sialoglycopeptides in human sera were modified by Neu5Ac without any <i>O</i>-acetylation; 90% of sialoglycopeptides in rat sera were also modified by Neu5Ac, with more than 60% that were further <i>O</i>-acetylated. In contrast, 99% of sialoglycopeptides in mouse sera contained Neu5Gc including 12% in <i>O</i>-acetylated forms. Among all <i>O</i>-acetylated <i>N</i>-glycans, rat sera had hybrid glycans fivefold those of mouse sera, while mouse sera contained 5.5-fold core-fucosylated glycans and 4.6-31.5-fold mono-/penta-/hexa-antenna glycans compared to mice. The overall <i>O</i>-acetylation proportions of serum glycoproteins in rats were much higher than those in mice, and diverse <i>O</i>-acetylation proportions also commonly existed at different glycosites of the same glycoproteins. This study enhances our understanding of <i>O</i>-acetylated sialoglycan diversities and underscores the necessity of considering glycosylation profiles when selecting suitable animal models for various biomedical studies.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":"5511-5519"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00653","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
O-Acetylation is a significant chemical modification of sialic acids on glycoproteins with diverse biological functions. As two important animal models, mice and rats have been widely used for various biomedical studies. In this study, we show that the sialic acid types and their O-acetylation patterns have large differences among serum glycoproteins of humans, rats, and mice. Based on intact N-glycopeptide analyses, all sialoglycopeptides in human sera were modified by Neu5Ac without any O-acetylation; 90% of sialoglycopeptides in rat sera were also modified by Neu5Ac, with more than 60% that were further O-acetylated. In contrast, 99% of sialoglycopeptides in mouse sera contained Neu5Gc including 12% in O-acetylated forms. Among all O-acetylated N-glycans, rat sera had hybrid glycans fivefold those of mouse sera, while mouse sera contained 5.5-fold core-fucosylated glycans and 4.6-31.5-fold mono-/penta-/hexa-antenna glycans compared to mice. The overall O-acetylation proportions of serum glycoproteins in rats were much higher than those in mice, and diverse O-acetylation proportions also commonly existed at different glycosites of the same glycoproteins. This study enhances our understanding of O-acetylated sialoglycan diversities and underscores the necessity of considering glycosylation profiles when selecting suitable animal models for various biomedical studies.
期刊介绍:
Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".