首页 > 最新文献

Journal of Proteome Research最新文献

英文 中文
Proteomic Insights into the Adaptation of Acidithiobacillus ferridurans to Municipal Solid Waste Incineration Residues for Enhanced Bioleaching Efficiency.
IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-04-09 DOI: 10.1021/acs.jproteome.4c00527
Jiri Kucera, Klemens Kremser, Pavel Bouchal, David Potesil, Tomas Vaculovic, Dalibor Vsiansky, Georg M Guebitz, Martin Mandl

Acidithiobacillus spp. have traditionally been utilized to extract metals from mineral ores through bioleaching. This process has recently expanded to include artificial ores, such as those derived from municipal solid waste incineration (MSWI) residues. Previous studies have indicated that microbial adaptation enhances bioleaching efficiency, prompting this study to identify proteins involved in the adaptation of A. ferridurans to MSWI residues. We employed data-independent acquisition-parallel accumulation serial fragmentation to determine the proteomic response of A. ferridurans DSM 583 to three distinct materials: bottom ash (BA), kettle ash (KA), and filter ash (FA), which represent typical MSWI residues. Our findings indicate that, irrespective of the residue type, a suite of membrane transporters, porins, efflux pumps, and specific electron and cation transfer proteins was notably upregulated. The upregulation of certain proteins involved in anaerobic pathways suggested the development of a spontaneous microaerobic environment, which minimally impacted the bioleaching efficiency. Additionally, the adaptation was most efficient at half the target FA concentration, marked by a significant increase in the detoxification and efflux systems required by microorganisms to tolerate high heavy metal concentrations. Given that metal recovery peaked at lower FA concentrations for most metals of interest, further adaptation at the level of protein expression may not be warranted for improved bioleaching outcomes.

{"title":"Proteomic Insights into the Adaptation of <i>Acidithiobacillus ferridurans</i> to Municipal Solid Waste Incineration Residues for Enhanced Bioleaching Efficiency.","authors":"Jiri Kucera, Klemens Kremser, Pavel Bouchal, David Potesil, Tomas Vaculovic, Dalibor Vsiansky, Georg M Guebitz, Martin Mandl","doi":"10.1021/acs.jproteome.4c00527","DOIUrl":"https://doi.org/10.1021/acs.jproteome.4c00527","url":null,"abstract":"<p><p><i>Acidithiobacillus</i> spp. have traditionally been utilized to extract metals from mineral ores through bioleaching. This process has recently expanded to include artificial ores, such as those derived from municipal solid waste incineration (MSWI) residues. Previous studies have indicated that microbial adaptation enhances bioleaching efficiency, prompting this study to identify proteins involved in the adaptation of <i>A. ferridurans</i> to MSWI residues. We employed data-independent acquisition-parallel accumulation serial fragmentation to determine the proteomic response of <i>A. ferridurans</i> DSM 583 to three distinct materials: bottom ash (BA), kettle ash (KA), and filter ash (FA), which represent typical MSWI residues. Our findings indicate that, irrespective of the residue type, a suite of membrane transporters, porins, efflux pumps, and specific electron and cation transfer proteins was notably upregulated. The upregulation of certain proteins involved in anaerobic pathways suggested the development of a spontaneous microaerobic environment, which minimally impacted the bioleaching efficiency. Additionally, the adaptation was most efficient at half the target FA concentration, marked by a significant increase in the detoxification and efflux systems required by microorganisms to tolerate high heavy metal concentrations. Given that metal recovery peaked at lower FA concentrations for most metals of interest, further adaptation at the level of protein expression may not be warranted for improved bioleaching outcomes.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143810093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Static Myoblast Loading on Protein Secretion Linked to Tenocyte Migration.
IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-04-09 DOI: 10.1021/acs.jproteome.5c00068
Junhong Li, Xin Zhou, Jialin Chen, Shaochun Zhu, Andre Mateus, Pernilla Eliasson, Paul J Kingham, Ludvig J Backman

Exercise has been shown to promote wound healing, including tendon repair. Myokines released from the exercised muscles are believed to play a significant role in this process. In our previous study, we used an in vitro coculture and loading model to demonstrate that 2% static loading of myoblasts increased the migration and proliferation of cocultured tenocytes─two crucial aspects of wound healing. IGF-1, released from myoblasts in response to 2% static loading, was identified as a contributor to the increased proliferation. However, the factors responsible for the enhanced migration remained unknown. In the current study, we subjected myoblasts in single culture conditions to 2, 5, and 10% static loading and performed proteomic analysis of the cell supernatants. Gene Ontology (GO) analysis revealed that 2% static loading induced the secretion of NBL1, C5, and EFEMP1, which is associated with cell migration and motility. Further investigation by adding exogenous recombinant proteins to human tenocytes showed that NBL1 increased tenocyte migration but not proliferation. This effect was not observed with treatments using C5 and EFEMP1.

{"title":"Impact of Static Myoblast Loading on Protein Secretion Linked to Tenocyte Migration.","authors":"Junhong Li, Xin Zhou, Jialin Chen, Shaochun Zhu, Andre Mateus, Pernilla Eliasson, Paul J Kingham, Ludvig J Backman","doi":"10.1021/acs.jproteome.5c00068","DOIUrl":"https://doi.org/10.1021/acs.jproteome.5c00068","url":null,"abstract":"<p><p>Exercise has been shown to promote wound healing, including tendon repair. Myokines released from the exercised muscles are believed to play a significant role in this process. In our previous study, we used an in vitro coculture and loading model to demonstrate that 2% static loading of myoblasts increased the migration and proliferation of cocultured tenocytes─two crucial aspects of wound healing. IGF-1, released from myoblasts in response to 2% static loading, was identified as a contributor to the increased proliferation. However, the factors responsible for the enhanced migration remained unknown. In the current study, we subjected myoblasts in single culture conditions to 2, 5, and 10% static loading and performed proteomic analysis of the cell supernatants. Gene Ontology (GO) analysis revealed that 2% static loading induced the secretion of NBL1, C5, and EFEMP1, which is associated with cell migration and motility. Further investigation by adding exogenous recombinant proteins to human tenocytes showed that NBL1 increased tenocyte migration but not proliferation. This effect was not observed with treatments using C5 and EFEMP1.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143810089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MSIght: A Modular Platform for Improved Confidence in Global, Untargeted Mass Spectrometry Imaging Annotation.
IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-04-08 DOI: 10.1021/acs.jproteome.4c01140
Lauren Fields, Hannah N Miles, Alexis E Adrian, Elliot Patrenets, William A Ricke, Lingjun Li

Mass spectrometry imaging (MSI) has gained popularity in clinical analyses due to its high sensitivity, specificity, and throughput. However, global profiling experiments are often still restricted to LC-MS/MS analyses that lack spatial localization due to low-throughput methods for on-tissue peptide identification and confirmation. Additionally, the integration of parallel LC-MS/MS peptide confirmation, as well as histological stains for accurate mapping of identifications, presents a large bottleneck for data analysis, limiting throughput for untargeted profiling experiments. Here, we present a novel platform, termed MSIght, which automates the integration of these multiple modalities into an accessible and modular platform. Histological stains of tissue sections are coregistered to their respective MSI data sets to improve spatial localization and resolution of identified peptides. MS/MS peptide identifications via untargeted LC-MS/MS are used to confirm putative MSI identifications, thus generating MS images with greater confidence in a high-throughput, global manner. This platform has the potential to enable large-scale clinical cohorts to utilize MSI in the future for global proteomic profiling that uncovers novel biomarkers in a spatially resolved manner, thus widely expanding the utility of MSI in clinical discovery.

{"title":"MSIght: A Modular Platform for Improved Confidence in Global, Untargeted Mass Spectrometry Imaging Annotation.","authors":"Lauren Fields, Hannah N Miles, Alexis E Adrian, Elliot Patrenets, William A Ricke, Lingjun Li","doi":"10.1021/acs.jproteome.4c01140","DOIUrl":"https://doi.org/10.1021/acs.jproteome.4c01140","url":null,"abstract":"<p><p>Mass spectrometry imaging (MSI) has gained popularity in clinical analyses due to its high sensitivity, specificity, and throughput. However, global profiling experiments are often still restricted to LC-MS/MS analyses that lack spatial localization due to low-throughput methods for on-tissue peptide identification and confirmation. Additionally, the integration of parallel LC-MS/MS peptide confirmation, as well as histological stains for accurate mapping of identifications, presents a large bottleneck for data analysis, limiting throughput for untargeted profiling experiments. Here, we present a novel platform, termed MSIght, which automates the integration of these multiple modalities into an accessible and modular platform. Histological stains of tissue sections are coregistered to their respective MSI data sets to improve spatial localization and resolution of identified peptides. MS/MS peptide identifications via untargeted LC-MS/MS are used to confirm putative MSI identifications, thus generating MS images with greater confidence in a high-throughput, global manner. This platform has the potential to enable large-scale clinical cohorts to utilize MSI in the future for global proteomic profiling that uncovers novel biomarkers in a spatially resolved manner, thus widely expanding the utility of MSI in clinical discovery.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143802040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
NA_mCNN: Classification of Sodium Transporters in Membrane Proteins by Integrating Multi-Window Deep Learning and ProtTrans for Their Therapeutic Potential.
IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-04-07 DOI: 10.1021/acs.jproteome.4c00884
Muhammad Shahid Malik, Van The Le, Yu-Yen Ou

Sodium transporters maintain cellular homeostasis by transporting ions, minerals, and nutrients across the membrane, and Na+/K+ ATPases facilitate the cotransport of solutes in neurons, muscle cells, and epithelial cells. Sodium transporters are important for many physiological processes, and their dysfunction leads to diseases such as hypertension, diabetes, neurological disorders, and cancer. The NA_mCNN computational method highlights the functional diversity and significance of sodium transporters in membrane proteins using protein language model embeddings (PLMs) and multiple-window scanning deep learning models. This work investigates PLMs that include Tape, ProtTrans, ESM-1b-1280, and ESM-2-128 to achieve more accuracy in sodium transporter classification. Five-fold cross-validation and independent testing demonstrate ProtTrans embedding robustness. In cross-validation, ProtTrans achieved an AUC of 0.9939, a sensitivity of 0.9829, and a specificity of 0.9889, demonstrating its ability to distinguish positive and negative samples. In independent testing, ProtTrans maintained a sensitivity of 0.9765, a specificity of 0.9991, and an AUC of 0.9975, which indicates its high level of discrimination. This study advances the understanding of sodium transporter diversity and function, as well as their role in human pathophysiology. Our goal is to use deep learning techniques and protein language models for identifying sodium transporters to accelerate identification and develop new therapeutic interventions.

{"title":"NA_mCNN: Classification of Sodium Transporters in Membrane Proteins by Integrating Multi-Window Deep Learning and ProtTrans for Their Therapeutic Potential.","authors":"Muhammad Shahid Malik, Van The Le, Yu-Yen Ou","doi":"10.1021/acs.jproteome.4c00884","DOIUrl":"https://doi.org/10.1021/acs.jproteome.4c00884","url":null,"abstract":"<p><p>Sodium transporters maintain cellular homeostasis by transporting ions, minerals, and nutrients across the membrane, and Na+/K+ ATPases facilitate the cotransport of solutes in neurons, muscle cells, and epithelial cells. Sodium transporters are important for many physiological processes, and their dysfunction leads to diseases such as hypertension, diabetes, neurological disorders, and cancer. The NA_mCNN computational method highlights the functional diversity and significance of sodium transporters in membrane proteins using protein language model embeddings (PLMs) and multiple-window scanning deep learning models. This work investigates PLMs that include Tape, ProtTrans, ESM-1b-1280, and ESM-2-128 to achieve more accuracy in sodium transporter classification. Five-fold cross-validation and independent testing demonstrate ProtTrans embedding robustness. In cross-validation, ProtTrans achieved an AUC of 0.9939, a sensitivity of 0.9829, and a specificity of 0.9889, demonstrating its ability to distinguish positive and negative samples. In independent testing, ProtTrans maintained a sensitivity of 0.9765, a specificity of 0.9991, and an AUC of 0.9975, which indicates its high level of discrimination. This study advances the understanding of sodium transporter diversity and function, as well as their role in human pathophysiology. Our goal is to use deep learning techniques and protein language models for identifying sodium transporters to accelerate identification and develop new therapeutic interventions.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143802041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal Proteome Profiling of Anterior Cruciate Ligament Tear Remnants: Secretory Proteins in the Acute Phase Potentially Promote Tissue Repair.
IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-04-07 DOI: 10.1021/acs.jproteome.4c00792
Yiming Liu, Bin Li, Jun Zhang, Boming Zhao, Liaobin Chen, Biao Chen

Previous studies reported that preserving the anterior cruciate ligament (ACL) remnants following ACL rupture during reconstruction surgery could promote graft healing. However, the temporal proteomic expression of ACL remnants remains unclear. Based on previous reports, we have redefined the initial 6 weeks following ACL rupture as the acute phase and the subsequent 6 weeks to 6 months as the subacute phase. High-throughput proteomic sequencing on ACL remnants from the two groups was utilized. Our study unveiled a total of 381 differential expression proteins (DEPs), with 136 upregulated and 245 downregulated proteins in the acute phase. By intersecting these findings with secretory protein databases, we identified 26 upregulated secretory proteins and 19 downregulated in the acute phase. The upregulation of MMP9 and VTN and the downregulation of COL1A1 and POSTN in the acute phase were further confirmed by immunohistochemistry. These findings suggest that the elevated expression of secretory proteins in the acute phase may play crucial roles in promoting cell proliferation, angiogenesis, and tissue repair of the graft. This study not only enhances our understanding of repair mechanisms in ACL remnant preservation but also provides a theoretical foundation for guiding rational clinical surgical timing.

以前的研究报告称,前交叉韧带断裂后在重建手术中保留前交叉韧带残余可促进移植物愈合。然而,前交叉韧带残余的时间蛋白质组表达仍不清楚。根据之前的报道,我们重新定义了前交叉韧带断裂后的最初 6 周为急性期,随后的 6 周至 6 个月为亚急性期。我们对两组患者的前交叉韧带残余物进行了高通量蛋白质组测序。我们的研究共发现了 381 种差异表达蛋白 (DEP),其中急性期上调的蛋白有 136 种,下调的蛋白有 245 种。通过将这些发现与分泌蛋白数据库进行交叉分析,我们发现在急性期上调的分泌蛋白有 26 个,下调的有 19 个。免疫组化进一步证实了急性期 MMP9 和 VTN 的上调以及 COL1A1 和 POSTN 的下调。这些研究结果表明,急性期分泌蛋白表达的升高可能在促进细胞增殖、血管生成和移植物组织修复方面起着至关重要的作用。这项研究不仅加深了我们对保留前交叉韧带残端修复机制的理解,还为指导临床合理安排手术时间提供了理论依据。
{"title":"Temporal Proteome Profiling of Anterior Cruciate Ligament Tear Remnants: Secretory Proteins in the Acute Phase Potentially Promote Tissue Repair.","authors":"Yiming Liu, Bin Li, Jun Zhang, Boming Zhao, Liaobin Chen, Biao Chen","doi":"10.1021/acs.jproteome.4c00792","DOIUrl":"https://doi.org/10.1021/acs.jproteome.4c00792","url":null,"abstract":"<p><p>Previous studies reported that preserving the anterior cruciate ligament (ACL) remnants following ACL rupture during reconstruction surgery could promote graft healing. However, the temporal proteomic expression of ACL remnants remains unclear. Based on previous reports, we have redefined the initial 6 weeks following ACL rupture as the acute phase and the subsequent 6 weeks to 6 months as the subacute phase. High-throughput proteomic sequencing on ACL remnants from the two groups was utilized. Our study unveiled a total of 381 differential expression proteins (DEPs), with 136 upregulated and 245 downregulated proteins in the acute phase. By intersecting these findings with secretory protein databases, we identified 26 upregulated secretory proteins and 19 downregulated in the acute phase. The upregulation of MMP9 and VTN and the downregulation of COL1A1 and POSTN in the acute phase were further confirmed by immunohistochemistry. These findings suggest that the elevated expression of secretory proteins in the acute phase may play crucial roles in promoting cell proliferation, angiogenesis, and tissue repair of the graft. This study not only enhances our understanding of repair mechanisms in ACL remnant preservation but also provides a theoretical foundation for guiding rational clinical surgical timing.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143794081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of N- and O-Glycosylation on Spike Glycoprotein 1 of SARS-CoV-1 and MERS-CoV.
IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-04-07 DOI: 10.1021/acs.jproteome.4c00716
Yuan Tian, John F Cipollo

SARS-CoV-1 and MERS-CoV were the infective agents of the 2002 and 2012 coronavirus outbreaks, respectively. Here, we report a comparative liquid chromatography/mass spectrometry (LC/MS) Orbitrap N- and O-glycosylation glycoproteomics study of the recombinant S1 spike derived from these two viruses. The former was produced in HEK293 cells and the latter in both HEK293 and insect cells. Both proteins were highly glycosylated, with SARS-CoV-1 S1 having 13 and MERS-CoV S1 having 12 N-glycosites. Nearly all were occupied at 85% or more. Between 2 and 113 unique N-glycan compositions were detected at each N-glycosite across the three proteins. Complex N-glycans dominated in HEK293 cell-derived spike S1 proteins. While glycosylation differs between HEK293 and insect cells, the extent of glycan processing at glycosites was similar for the two MERS-CoV S1 forms. The HEK293-derived SARS-CoV-1 S1 N-glycans were more highly sialylated and fucosylated compared to MERS S1, while the latter had more high-mannose glycosides, particularly in the N-terminus and near the RBD. Seven and 8 O-glycosites were identified in SARS-CoV-1 S1 and MERS-CoV S1, respectively. Mapping of predicted antigenic and glycosylation sites reveals colocalization consistent with a role for glycosylation in immune system avoidance. Glycosylation patterns of these S1 proteins differ from those of other SARS-CoV-1 and MERS-CoV spike reported forms such as recombinant trimeric and virus-propagated forms, which has implications for virus research, including vaccine development, as glycosylation plays a role in spike function and epitope structure.

{"title":"Comparison of <i>N-</i> and <i>O-</i>Glycosylation on Spike Glycoprotein 1 of SARS-CoV-1 and MERS-CoV.","authors":"Yuan Tian, John F Cipollo","doi":"10.1021/acs.jproteome.4c00716","DOIUrl":"https://doi.org/10.1021/acs.jproteome.4c00716","url":null,"abstract":"<p><p>SARS-CoV-1 and MERS-CoV were the infective agents of the 2002 and 2012 coronavirus outbreaks, respectively. Here, we report a comparative liquid chromatography/mass spectrometry (LC/MS) Orbitrap <i>N-</i> and <i>O-</i>glycosylation glycoproteomics study of the recombinant S1 spike derived from these two viruses. The former was produced in HEK293 cells and the latter in both HEK293 and insect cells. Both proteins were highly glycosylated, with SARS-CoV-1 S1 having 13 and MERS-CoV S1 having 12 <i>N-</i>glycosites. Nearly all were occupied at 85% or more. Between 2 and 113 unique <i>N-</i>glycan compositions were detected at each <i>N-</i>glycosite across the three proteins. Complex <i>N</i>-glycans dominated in HEK293 cell-derived spike S1 proteins. While glycosylation differs between HEK293 and insect cells, the extent of glycan processing at glycosites was similar for the two MERS-CoV S1 forms. The HEK293-derived SARS-CoV-1 S1 <i>N-</i>glycans were more highly sialylated and fucosylated compared to MERS S1, while the latter had more high-mannose glycosides, particularly in the <i>N</i>-terminus and near the RBD. Seven and 8 <i>O</i>-glycosites were identified in SARS-CoV-1 S1 and MERS-CoV S1, respectively. Mapping of predicted antigenic and glycosylation sites reveals colocalization consistent with a role for glycosylation in immune system avoidance. Glycosylation patterns of these S1 proteins differ from those of other SARS-CoV-1 and MERS-CoV spike reported forms such as recombinant trimeric and virus-propagated forms, which has implications for virus research, including vaccine development, as glycosylation plays a role in spike function and epitope structure.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143802035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiomics Analysis Reveals Neuroblastoma Molecular Signature Predicting Risk Stratification and Tumor Microenvironment Differences.
IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-04-04 Epub Date: 2025-01-06 DOI: 10.1021/acs.jproteome.4c00882
Xing Zhou, Zhaokai Zhou, Xiaohan Qin, Jian Cheng, Yongcheng Fu, Yuanyuan Wang, Jingyue Wang, Pan Qin, Da Zhang

Neuroblastoma (NB) remains associated with high mortality and low initial response rate, especially for high-risk patients, thus warranting exploration of molecular markers for precision risk classifiers. Through integrating multiomics profiling, we identified a range of hub genes involved in cell cycle and associated with dismal prognosis and malignant cells. Single-cell transcriptome sequencing revealed that a subset of malignant cells, subcluster 1, characterized by high proliferation and dedifferentiation, was strongly correlated with the hub gene signature and orchestrated an immunosuppressive tumor microenvironment (TME). Furthermore, we constructed a robust malignant subcluster 1 related signature (MSRS), which was an independent prognostic factor and superior to other clinical characteristics and published signatures. Besides, TME differences conferred remarkably distinct therapeutic responses between high and low MSRS groups. Notably, polo-like kinase-1 (PLK1) was one of the most crucial contributors to MSRS and remarkably correlated with malignant subcluster 1, and PLK1 inhibition was effective for NB treatment as demonstrated by in silico analysis and in vitro experiments. Overall, our study constructs a novel molecular model to further guide the clinical classification and individualized treatment of NB.

神经母细胞瘤(NB)仍然与高死亡率和低初始反应率有关,尤其是对高危患者而言,因此有必要探索分子标记物以进行精确的风险分类。通过整合多组学分析,我们发现了一系列参与细胞周期并与预后不良和恶性细胞相关的枢纽基因。单细胞转录组测序显示,恶性细胞亚群1以高增殖和去分化为特征,与中枢基因特征密切相关,并协调了免疫抑制性肿瘤微环境(TME)。此外,我们还构建了一个强大的恶性亚簇1相关特征(MSRS),它是一个独立的预后因素,优于其他临床特征和已发表的特征。此外,TME的差异也使高MSRS组和低MSRS组的治疗反应截然不同。值得注意的是,Polo-like kinase-1(PLK1)是导致MSRS的最关键因素之一,并与恶性亚簇1显著相关,硅学分析和体外实验证明,抑制PLK1对NB治疗有效。总之,我们的研究构建了一个新的分子模型,可进一步指导NB的临床分类和个体化治疗。
{"title":"Multiomics Analysis Reveals Neuroblastoma Molecular Signature Predicting Risk Stratification and Tumor Microenvironment Differences.","authors":"Xing Zhou, Zhaokai Zhou, Xiaohan Qin, Jian Cheng, Yongcheng Fu, Yuanyuan Wang, Jingyue Wang, Pan Qin, Da Zhang","doi":"10.1021/acs.jproteome.4c00882","DOIUrl":"https://doi.org/10.1021/acs.jproteome.4c00882","url":null,"abstract":"<p><p>Neuroblastoma (NB) remains associated with high mortality and low initial response rate, especially for high-risk patients, thus warranting exploration of molecular markers for precision risk classifiers. Through integrating multiomics profiling, we identified a range of hub genes involved in cell cycle and associated with dismal prognosis and malignant cells. Single-cell transcriptome sequencing revealed that a subset of malignant cells, subcluster 1, characterized by high proliferation and dedifferentiation, was strongly correlated with the hub gene signature and orchestrated an immunosuppressive tumor microenvironment (TME). Furthermore, we constructed a robust malignant subcluster 1 related signature (MSRS), which was an independent prognostic factor and superior to other clinical characteristics and published signatures. Besides, TME differences conferred remarkably distinct therapeutic responses between high and low MSRS groups. Notably, polo-like kinase-1 (PLK1) was one of the most crucial contributors to MSRS and remarkably correlated with malignant subcluster 1, and PLK1 inhibition was effective for NB treatment as demonstrated by <i>in silico</i> analysis and <i>in vitro</i> experiments. Overall, our study constructs a novel molecular model to further guide the clinical classification and individualized treatment of NB.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":"24 4","pages":"1606-1623"},"PeriodicalIF":3.8,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143778610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
pyOpenMS-viz: Streamlining Mass Spectrometry Data Visualization with pandas. pyOpenMS-viz:使用 pandas 简化质谱数据可视化。
IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-04-04 Epub Date: 2025-02-28 DOI: 10.1021/acs.jproteome.4c00873
Justin Cyril Sing, Joshua Charkow, Axel Walter, Mingxuan Gao, Tom David Müller, Wout Bittremieux, Timo Sachsenberg, Hannes Luc Röst

Mass spectrometry data visualization is essential for a wide range of applications, such as validation of workflows and results, benchmarking new algorithms, and creating comprehensive quality control reports. Python offers a popular and powerful framework for analyzing and visualizing multidimensional data; however, generating commonly used mass spectrometry plots in Python can be cumbersome. Here we present pyOpenMS-viz, a versatile, unified framework for generating mass spectrometry plots. pyOpenMS-viz directly extends pandas DataFrame plotting for generating figures in a single line of code. This implementation enables easy integration across various Python-based mass spectrometry tools that already use pandas DataFrames to store MS data. pyOpenMS-viz is open-source under a BSD 3-Clause license and freely available at https://github.com/OpenMS/pyopenms_viz.

{"title":"pyOpenMS-viz: Streamlining Mass Spectrometry Data Visualization with pandas.","authors":"Justin Cyril Sing, Joshua Charkow, Axel Walter, Mingxuan Gao, Tom David Müller, Wout Bittremieux, Timo Sachsenberg, Hannes Luc Röst","doi":"10.1021/acs.jproteome.4c00873","DOIUrl":"10.1021/acs.jproteome.4c00873","url":null,"abstract":"<p><p>Mass spectrometry data visualization is essential for a wide range of applications, such as validation of workflows and results, benchmarking new algorithms, and creating comprehensive quality control reports. Python offers a popular and powerful framework for analyzing and visualizing multidimensional data; however, generating commonly used mass spectrometry plots in Python can be cumbersome. Here we present pyOpenMS-viz, a versatile, unified framework for generating mass spectrometry plots. pyOpenMS-viz directly extends pandas DataFrame plotting for generating figures in a single line of code. This implementation enables easy integration across various Python-based mass spectrometry tools that already use pandas DataFrames to store MS data. pyOpenMS-viz is open-source under a BSD 3-Clause license and freely available at https://github.com/OpenMS/pyopenms_viz.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":"2152-2158"},"PeriodicalIF":3.8,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143522111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comparison of Derivatives of Alanine and d-Alanine Used in Gas Chromatography-Mass Spectrometry Analysis for Protein Kinetics.
IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-04-04 Epub Date: 2025-03-16 DOI: 10.1021/acs.jproteome.4c01004
Yihong Kaufmann, Rick Williams, Matthew Cotter, Arny Ferrando, Elisabet Børsheim

Stable isotope techniques serve as invaluable tools for kinetic measurements in metabolic research. In particular, deuterated water (D2O) administration is increasingly being applied in human health research. For use in protein kinetic studies, this includes measurements on gas chromatography-mass spectrometry (GC-MS) analysis of alanine (ALA) and deuterium-labeled alanines (d-ALAs) coming from D2O administration. However, the choice of the derivative of ALA and d-ALAs used in such analyses has not been evaluated thoroughly. Hence, we conducted a comprehensive head-to-head comparison to determine the most effective and reliable derivative. Two derivatization reagents, N,N-dimethylformamide dimethyl acetal (methyl-8 reagent) and N-methyl-N-tert-butyldimethylsilyltrifluoroacetamide (MtBSTFA), were considered as candidates. Using chemical standards and available rodent muscle tissue, both reagents underwent testing, including the standard curve linear regression fit, sensitivity, reproducibility, and, importantly, column effectiveness. Our findings indicate that both reagents were suitable for ALA/d-ALAs analyses. However, the MtBSTFA derivative exhibited a better linear regression fit, higher sensitivity, and greater reproducibility than methyl-8. More importantly, the methyl-8 derivative resulted in severe column damage. In conclusion, our study highlights the MtBSTFA derivative as a preferred choice for ALA and d-ALAs GC-MS analysis, contributing to a reliable and sensitive analytical method for D2O administration studies for measurements of in vivo metabolic rates.

{"title":"A Comparison of Derivatives of Alanine and d-Alanine Used in Gas Chromatography-Mass Spectrometry Analysis for Protein Kinetics.","authors":"Yihong Kaufmann, Rick Williams, Matthew Cotter, Arny Ferrando, Elisabet Børsheim","doi":"10.1021/acs.jproteome.4c01004","DOIUrl":"10.1021/acs.jproteome.4c01004","url":null,"abstract":"<p><p>Stable isotope techniques serve as invaluable tools for kinetic measurements in metabolic research. In particular, deuterated water (D<sub>2</sub>O) administration is increasingly being applied in human health research. For use in protein kinetic studies, this includes measurements on gas chromatography-mass spectrometry (GC-MS) analysis of alanine (ALA) and deuterium-labeled alanines (d-ALAs) coming from D<sub>2</sub>O administration. However, the choice of the derivative of ALA and d-ALAs used in such analyses has not been evaluated thoroughly. Hence, we conducted a comprehensive head-to-head comparison to determine the most effective and reliable derivative. Two derivatization reagents, <i>N</i>,<i>N</i>-dimethylformamide dimethyl acetal (methyl-8 reagent) and <i>N</i>-methyl-<i>N</i>-<i>tert</i>-butyldimethylsilyltrifluoroacetamide (MtBSTFA), were considered as candidates. Using chemical standards and available rodent muscle tissue, both reagents underwent testing, including the standard curve linear regression fit, sensitivity, reproducibility, and, importantly, column effectiveness. Our findings indicate that both reagents were suitable for ALA/d-ALAs analyses. However, the MtBSTFA derivative exhibited a better linear regression fit, higher sensitivity, and greater reproducibility than methyl-8. More importantly, the methyl-8 derivative resulted in severe column damage. In conclusion, our study highlights the MtBSTFA derivative as a preferred choice for ALA and d-ALAs GC-MS analysis, contributing to a reliable and sensitive analytical method for D<sub>2</sub>O administration studies for measurements of in vivo metabolic rates.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":"1983-1991"},"PeriodicalIF":3.8,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11970985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143646538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Increasing Proteome Coverage Through a Reduction in Analyte Complexity in Single-Cell Equivalent Samples. 通过降低单细胞等效样本的分析复杂度提高蛋白质组覆盖率
IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2025-04-04 Epub Date: 2024-06-04 DOI: 10.1021/acs.jproteome.4c00062
Marion Pang, Jeff J Jones, Ting-Yu Wang, Baiyi Quan, Nicole J Kubat, Yanping Qiu, Michael L Roukes, Tsui-Fen Chou

The advancement of sophisticated instrumentation in mass spectrometry has catalyzed an in-depth exploration of complex proteomes. This exploration necessitates a nuanced balance in experimental design, particularly between quantitative precision and the enumeration of analytes detected. In bottom-up proteomics, a key challenge is that oversampling of abundant proteins can adversely affect the identification of a diverse array of unique proteins. This issue is especially pronounced in samples with limited analytes, such as small tissue biopsies or single-cell samples. Methods such as depletion and fractionation are suboptimal to reduce oversampling in single cell samples, and other improvements on LC and mass spectrometry technologies and methods have been developed to address the trade-off between precision and enumeration. We demonstrate that by using a monosubstrate protease for proteomic analysis of single-cell equivalent digest samples, an improvement in quantitative accuracy can be achieved, while maintaining high proteome coverage established by trypsin. This improvement is particularly vital for the field of single-cell proteomics, where single-cell samples with limited number of protein copies, especially in the context of low-abundance proteins, can benefit from considering analyte complexity. Considerations about analyte complexity, alongside chromatographic complexity, integration with data acquisition methods, and other factors such as those involving enzyme kinetics, will be crucial in the design of future single-cell workflows.

质谱分析仪器的进步促进了对复杂蛋白质组的深入研究。这种探索需要在实验设计中取得微妙的平衡,特别是在定量精度和检测分析物的计数之间。在自下而上的蛋白质组学中,一个关键的挑战是对丰富蛋白质的过度取样可能会对多种独特蛋白质的鉴定产生不利影响。这一问题在分析物有限的样本(如小组织活检或单细胞样本)中尤为突出。为了减少单细胞样本中的过量取样,耗尽和分馏等方法都不是最佳选择,因此人们对液相色谱和质谱技术和方法进行了其他改进,以解决精度和计数之间的权衡问题。我们证明,使用单底物蛋白酶对单细胞等效消化样本进行蛋白质组分析,可以提高定量精度,同时保持胰蛋白酶建立的高蛋白质组覆盖率。这种改进对单细胞蛋白质组学领域尤为重要,因为单细胞样本的蛋白质拷贝数有限,特别是在低丰度蛋白质的情况下,考虑分析物的复杂性会使分析受益匪浅。考虑分析物的复杂性、色谱复杂性、与数据采集方法的整合以及其他因素(如涉及酶动力学的因素)对未来单细胞工作流程的设计至关重要。
{"title":"Increasing Proteome Coverage Through a Reduction in Analyte Complexity in Single-Cell Equivalent Samples.","authors":"Marion Pang, Jeff J Jones, Ting-Yu Wang, Baiyi Quan, Nicole J Kubat, Yanping Qiu, Michael L Roukes, Tsui-Fen Chou","doi":"10.1021/acs.jproteome.4c00062","DOIUrl":"10.1021/acs.jproteome.4c00062","url":null,"abstract":"<p><p>The advancement of sophisticated instrumentation in mass spectrometry has catalyzed an in-depth exploration of complex proteomes. This exploration necessitates a nuanced balance in experimental design, particularly between quantitative precision and the enumeration of analytes detected. In bottom-up proteomics, a key challenge is that oversampling of abundant proteins can adversely affect the identification of a diverse array of unique proteins. This issue is especially pronounced in samples with limited analytes, such as small tissue biopsies or single-cell samples. Methods such as depletion and fractionation are suboptimal to reduce oversampling in single cell samples, and other improvements on LC and mass spectrometry technologies and methods have been developed to address the trade-off between precision and enumeration. We demonstrate that by using a monosubstrate protease for proteomic analysis of single-cell equivalent digest samples, an improvement in quantitative accuracy can be achieved, while maintaining high proteome coverage established by trypsin. This improvement is particularly vital for the field of single-cell proteomics, where single-cell samples with limited number of protein copies, especially in the context of low-abundance proteins, can benefit from considering analyte complexity. Considerations about analyte complexity, alongside chromatographic complexity, integration with data acquisition methods, and other factors such as those involving enzyme kinetics, will be crucial in the design of future single-cell workflows.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":"1528-1538"},"PeriodicalIF":3.8,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141236702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Proteome Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1