Age-associated metabolic and epigenetic barriers during direct reprogramming of mouse fibroblasts into induced cardiomyocytes.

IF 8 1区 医学 Q1 CELL BIOLOGY Aging Cell Pub Date : 2024-11-14 DOI:10.1111/acel.14371
Francisco Santos, Magda Correia, Rafaela Dias, Bárbara Bola, Roberta Noberini, Rita S Ferreira, Diogo Trigo, Pedro Domingues, José Teixeira, Tiziana Bonaldi, Paulo J Oliveira, Christian Bär, Bruno Bernardes de Jesus, Sandrina Nóbrega-Pereira
{"title":"Age-associated metabolic and epigenetic barriers during direct reprogramming of mouse fibroblasts into induced cardiomyocytes.","authors":"Francisco Santos, Magda Correia, Rafaela Dias, Bárbara Bola, Roberta Noberini, Rita S Ferreira, Diogo Trigo, Pedro Domingues, José Teixeira, Tiziana Bonaldi, Paulo J Oliveira, Christian Bär, Bruno Bernardes de Jesus, Sandrina Nóbrega-Pereira","doi":"10.1111/acel.14371","DOIUrl":null,"url":null,"abstract":"<p><p>Heart disease is the leading cause of mortality in developed countries, and novel regenerative procedures are warranted. Direct cardiac conversion (DCC) of adult fibroblasts can create induced cardiomyocytes (iCMs) for gene and cell-based heart therapy, and in addition to holding great promise, still lacks effectiveness as metabolic and age-associated barriers remain elusive. Here, by employing MGT (Mef2c, Gata4, Tbx5) transduction of mouse embryonic fibroblasts (MEFs) and adult (dermal and cardiac) fibroblasts from animals of different ages, we provide evidence that the direct reprogramming of fibroblasts into iCMs decreases with age. Analyses of histone posttranslational modifications and ChIP-qPCR revealed age-dependent alterations in the epigenetic landscape of DCC. Moreover, DCC is accompanied by profound mitochondrial metabolic adaptations, including a lower abundance of anabolic metabolites, network remodeling, and reliance on mitochondrial respiration. In vitro metabolic modulation and dietary manipulation in vivo improve DCC efficiency and are accompanied by significant alterations in histone marks and mitochondrial homeostasis. Importantly, adult-derived iCMs exhibit increased accumulation of oxidative stress in the mitochondria and activation of mitophagy or dietary lipids; they improve DCC and revert mitochondrial oxidative damage. Our study provides evidence that metaboloepigenetics plays a direct role in cell fate transitions driving DCC, highlighting the potential use of metabolic modulation to improve cardiac regenerative strategies.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14371"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14371","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Heart disease is the leading cause of mortality in developed countries, and novel regenerative procedures are warranted. Direct cardiac conversion (DCC) of adult fibroblasts can create induced cardiomyocytes (iCMs) for gene and cell-based heart therapy, and in addition to holding great promise, still lacks effectiveness as metabolic and age-associated barriers remain elusive. Here, by employing MGT (Mef2c, Gata4, Tbx5) transduction of mouse embryonic fibroblasts (MEFs) and adult (dermal and cardiac) fibroblasts from animals of different ages, we provide evidence that the direct reprogramming of fibroblasts into iCMs decreases with age. Analyses of histone posttranslational modifications and ChIP-qPCR revealed age-dependent alterations in the epigenetic landscape of DCC. Moreover, DCC is accompanied by profound mitochondrial metabolic adaptations, including a lower abundance of anabolic metabolites, network remodeling, and reliance on mitochondrial respiration. In vitro metabolic modulation and dietary manipulation in vivo improve DCC efficiency and are accompanied by significant alterations in histone marks and mitochondrial homeostasis. Importantly, adult-derived iCMs exhibit increased accumulation of oxidative stress in the mitochondria and activation of mitophagy or dietary lipids; they improve DCC and revert mitochondrial oxidative damage. Our study provides evidence that metaboloepigenetics plays a direct role in cell fate transitions driving DCC, highlighting the potential use of metabolic modulation to improve cardiac regenerative strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在将小鼠成纤维细胞直接重编程为诱导心肌细胞的过程中,与年龄相关的代谢和表观遗传学障碍。
在发达国家,心脏病是导致死亡的主要原因,因此需要采用新型再生程序。成人成纤维细胞的直接心脏转化(DCC)可以产生诱导心肌细胞(iCMs),用于基于基因和细胞的心脏治疗,这种方法除了前景广阔外,还缺乏有效性,因为代谢和年龄相关的障碍仍然难以克服。在这里,我们利用 MGT(Mef2c、Gata4、Tbx5)转导小鼠胚胎成纤维细胞(MEFs)和不同年龄动物的成纤维细胞(真皮和心脏),提供了成纤维细胞直接重编程为 iCMs 会随年龄增长而减少的证据。对组蛋白翻译后修饰和 ChIP-qPCR 的分析表明,DCC 的表观遗传景观的改变与年龄有关。此外,DCC 还伴随着深刻的线粒体代谢适应性变化,包括合成代谢产物丰度降低、网络重塑以及对线粒体呼吸的依赖。体外代谢调节和体内饮食控制提高了 DCC 的效率,同时组蛋白标记和线粒体稳态也发生了显著变化。重要的是,成体衍生的 iCMs 表现出线粒体中氧化应激累积增加以及丝裂吞噬或饮食脂质的激活;它们改善了 DCC 并恢复了线粒体氧化损伤。我们的研究提供了证据,证明代谢表观遗传学在驱动 DCC 的细胞命运转换中发挥了直接作用,突出了利用代谢调节改善心脏再生策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aging Cell
Aging Cell Biochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍: Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health. The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include: Academic Search (EBSCO Publishing) Academic Search Alumni Edition (EBSCO Publishing) Academic Search Premier (EBSCO Publishing) Biological Science Database (ProQuest) CAS: Chemical Abstracts Service (ACS) Embase (Elsevier) InfoTrac (GALE Cengage) Ingenta Select ISI Alerting Services Journal Citation Reports/Science Edition (Clarivate Analytics) MEDLINE/PubMed (NLM) Natural Science Collection (ProQuest) PubMed Dietary Supplement Subset (NLM) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) Web of Science (Clarivate Analytics) Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.
期刊最新文献
The soil Mycobacterium sp. promotes health and longevity through different bacteria-derived molecules in Caenorhabditis elegans. Correction to "Higher expression of denervation-responsive genes is negatively associated with muscle volume and performance traits in the study of muscle, mobility, and aging (SOMMA)". A small-molecule screen identifies novel aging modulators by targeting 5-HT/DA signaling pathway. Muscle fibroblasts and stem cells stimulate motor neurons in an age and exercise-dependent manner. Compromised CD8+ T cell immunity in the aged brain increases severity of neurotropic coronavirus infection and postinfectious cognitive impairment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1