GelMA/tannic acid hydrogel decorated polypropylene mesh facilitating regeneration of abdominal wall defects.

IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Biomaterials Science Pub Date : 2024-11-11 DOI:10.1039/d4bm01066c
Haonan Huang, Fuxin Tang, Wenchang Gan, Ruibing Li, Zehui Hou, Taicheng Zhou, Ning Ma
{"title":"GelMA/tannic acid hydrogel decorated polypropylene mesh facilitating regeneration of abdominal wall defects.","authors":"Haonan Huang, Fuxin Tang, Wenchang Gan, Ruibing Li, Zehui Hou, Taicheng Zhou, Ning Ma","doi":"10.1039/d4bm01066c","DOIUrl":null,"url":null,"abstract":"<p><p>Polypropylene (PP) mesh is a widely used prosthetic material in hernia repair due to its excellent mechanical properties and appropriate biocompatibility. However, its application is limited due to severe adhesion between the mesh and the abdominal viscera, leading to complications such as chronic pain, intestinal obstruction, and hernia recurrence. Currently, building anti-adhesive PP mesh remains a formidable challenge. In this work, a novel anti-adhesive PP mesh (PPM/GelMA/TA) was designed with a simple and efficient <i>in situ</i> gel of GelMA solution on the surface of PP mesh and further crosslinking of tannic acid (TA). It was demonstrated that PPM/GelMA/TA has good biocompatibility and excellent antioxidant property and effectively activates the polarization of macrophages toward the M2 phenotype <i>in vitro</i>. In addition, PPM/GelMA/TA could inhibit the growth of bacteria, which is of great significance for preventing postoperative infections. Furthermore, in the repair of full-thickness abdominal wall defects in rats, PPM/GelMA/TA reduced inflammation, promoted macrophage M2 polarization, and collagen deposition and angiogenesis so that does not cause any abdominal adhesion compared with PP mesh. As a result, our PPM/GelMA/TA shows an attractive prospect in the treatment of abdominal wall defect without adhesions.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm01066c","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Polypropylene (PP) mesh is a widely used prosthetic material in hernia repair due to its excellent mechanical properties and appropriate biocompatibility. However, its application is limited due to severe adhesion between the mesh and the abdominal viscera, leading to complications such as chronic pain, intestinal obstruction, and hernia recurrence. Currently, building anti-adhesive PP mesh remains a formidable challenge. In this work, a novel anti-adhesive PP mesh (PPM/GelMA/TA) was designed with a simple and efficient in situ gel of GelMA solution on the surface of PP mesh and further crosslinking of tannic acid (TA). It was demonstrated that PPM/GelMA/TA has good biocompatibility and excellent antioxidant property and effectively activates the polarization of macrophages toward the M2 phenotype in vitro. In addition, PPM/GelMA/TA could inhibit the growth of bacteria, which is of great significance for preventing postoperative infections. Furthermore, in the repair of full-thickness abdominal wall defects in rats, PPM/GelMA/TA reduced inflammation, promoted macrophage M2 polarization, and collagen deposition and angiogenesis so that does not cause any abdominal adhesion compared with PP mesh. As a result, our PPM/GelMA/TA shows an attractive prospect in the treatment of abdominal wall defect without adhesions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GelMA/单宁酸水凝胶装饰聚丙烯网片促进腹壁缺损再生。
聚丙烯(PP)网片具有优良的机械性能和适当的生物相容性,是疝修补术中广泛使用的假体材料。然而,由于网片与腹腔内脏之间存在严重粘连,导致慢性疼痛、肠梗阻和疝气复发等并发症,其应用受到限制。目前,制造抗粘连 PP 网片仍是一项艰巨的挑战。本研究设计了一种新型防粘聚丙烯网(PPM/GelMA/TA),在聚丙烯网表面原位凝胶 GelMA 溶液,并进一步交联单宁酸(TA)。实验证明,PPM/GelMA/TA 具有良好的生物相容性和优异的抗氧化性,并能在体外有效激活巨噬细胞向 M2 表型极化。此外,PPM/GelMA/TA 还能抑制细菌生长,对预防术后感染具有重要意义。此外,在大鼠全厚腹壁缺损的修复中,PPM/GelMA/TA 可减少炎症反应,促进巨噬细胞 M2 极化,促进胶原沉积和血管生成,因此与 PP 网片相比不会造成任何腹腔粘连。因此,我们的 PPM/GelMA/TA 在治疗无粘连的腹壁缺损方面显示出诱人的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
期刊最新文献
Back cover Adhesive silk fibroin/magnesium composite films and their application for removable wound dressing. Cholesterol- and ssDNA-binding fusion protein-mediated DNA tethering on the plasma membrane. Correction: Bioactivity of cerium dioxide nanoparticles as a function of size and surface features. A glucose responsive multifunctional hydrogel with antibacterial properties and real-time monitoring for diabetic wound treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1