Gradient Distribution of Zincophilic Sites for Stable Aqueous Zinc-Based Flow Batteries with High Capacity.

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-11-14 DOI:10.1002/adma.202414388
Zhiquan Wei, Guangmeng Qu, Zhaodong Huang, Yiqiao Wang, Dedi Li, Xinru Yang, Shaoce Zhang, Ao Chen, Yanbo Wang, Hu Hong, Qing Li, Chunyi Zhi
{"title":"Gradient Distribution of Zincophilic Sites for Stable Aqueous Zinc-Based Flow Batteries with High Capacity.","authors":"Zhiquan Wei, Guangmeng Qu, Zhaodong Huang, Yiqiao Wang, Dedi Li, Xinru Yang, Shaoce Zhang, Ao Chen, Yanbo Wang, Hu Hong, Qing Li, Chunyi Zhi","doi":"10.1002/adma.202414388","DOIUrl":null,"url":null,"abstract":"<p><p>Current collectors, as reaction sites, play a crucial role in influencing various electrochemical performances in emerging cost-effective zinc-based flow batteries (Zn-based FBs). 3D carbon felts (CF) are commonly used but lack effectiveness in improving Zn metal plating/stripping. Here, a current collector with gravity-induced gradient copper nanoparticles (CF-G-Cu NPs) is developed, integrating gradient conductivity and zincophilicity to regulate Zn deposition and suppress side reactions. The CF-G-Cu NPs electrode modulates Zn nucleation and growth via the zincophilic Cu/CuZn<sub>5</sub> alloy has been confirmed by density functional theory (DFT) calculations. Finite element simulation demonstrates the gradient internal structure effectively optimizes the local electric/current field distribution to regulate the Zn<sup>2+</sup> flux, improving bottom-up plating behavior for Zn metal and mitigating top-surface dendrite growth. As a result, Zn-based asymmetrical FBs with CF-G-Cu NPs electrodes achieve an areal capacity of 30 mAh cm<sup>-2</sup> over 640 h with Coulombic efficiency of 99.5% at 40 mA cm<sup>-2</sup>. The integrated Zn-Iodide FBs exhibit a competitive long-term lifespan of 2910 h (5800 cycles) with low energy efficiency decay of 0.062% per cycle and high cumulative capacity of 112800 mAh cm<sup>-2</sup> at a high current density of 100 mA cm<sup>-2</sup>. This gradient distribution strategy offers a simple mode for developing Zn-based FB systems.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":" ","pages":"e2414388"},"PeriodicalIF":27.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202414388","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Current collectors, as reaction sites, play a crucial role in influencing various electrochemical performances in emerging cost-effective zinc-based flow batteries (Zn-based FBs). 3D carbon felts (CF) are commonly used but lack effectiveness in improving Zn metal plating/stripping. Here, a current collector with gravity-induced gradient copper nanoparticles (CF-G-Cu NPs) is developed, integrating gradient conductivity and zincophilicity to regulate Zn deposition and suppress side reactions. The CF-G-Cu NPs electrode modulates Zn nucleation and growth via the zincophilic Cu/CuZn5 alloy has been confirmed by density functional theory (DFT) calculations. Finite element simulation demonstrates the gradient internal structure effectively optimizes the local electric/current field distribution to regulate the Zn2+ flux, improving bottom-up plating behavior for Zn metal and mitigating top-surface dendrite growth. As a result, Zn-based asymmetrical FBs with CF-G-Cu NPs electrodes achieve an areal capacity of 30 mAh cm-2 over 640 h with Coulombic efficiency of 99.5% at 40 mA cm-2. The integrated Zn-Iodide FBs exhibit a competitive long-term lifespan of 2910 h (5800 cycles) with low energy efficiency decay of 0.062% per cycle and high cumulative capacity of 112800 mAh cm-2 at a high current density of 100 mA cm-2. This gradient distribution strategy offers a simple mode for developing Zn-based FB systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高容量稳定锌基水流电池的亲锌位梯度分布。
集流体作为反应场所,在影响新兴的高性价比锌基液流电池(Zn-based FBs)的各种电化学性能方面发挥着至关重要的作用。三维碳毡(CF)已被普遍使用,但在改善锌金属镀层/剥离方面缺乏有效性。在这里,我们开发了一种带有重力诱导梯度纳米铜粒子(CF-G-Cu NPs)的集流体,它将梯度导电性和亲锌性结合在一起,以调节锌沉积并抑制副反应。密度泛函理论(DFT)计算证实,CF-G-Cu NPs 电极通过亲锌的 Cu/CuZn5 合金调节锌的成核和生长。有限元模拟表明,梯度内部结构可有效优化局部电场/电流场分布,从而调节 Zn2+ 通量,改善金属锌自下而上的电镀行为,并减缓顶面枝晶的生长。因此,带有 CF-G-Cu NPs 电极的 Zn 基非对称 FB 在 640 小时内实现了 30 mAh cm-2 的面积容量,在 40 mA cm-2 时库仑效率达到 99.5%。在 100 mA cm-2 的高电流密度下,集成的碘化锌 FB 具有极具竞争力的长期寿命,达 2910 h(5800 次循环),每次循环的能效衰减低至 0.062%,累积容量高达 112800 mAh cm-2。这种梯度分布策略为开发锌基 FB 系统提供了一种简单的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
UNLEASH: Ultralow Nanocluster Loading of Pt via Electro-Acoustic Seasoning of Heterocatalysts Versatile Biopolymers for Advanced Lithium and Zinc Metal Batteries High-Performance Narrowband Pure-Green OLEDs with Gamut Approaching BT.2020 Standard: Deuteration Promotes Device Efficiency and Lifetime Simultaneously Sustainable Lithography Paradigm Enabled by Mechanically Peelable Resists UOTe: Kondo-Interacting Topological Antiferromagnet in a Van der Waals Lattice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1