Ligand-Tethered Extracellular Vesicles Mediated RNA Therapy for Liver Fibrosis.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL Advanced Healthcare Materials Pub Date : 2024-11-09 DOI:10.1002/adhm.202403068
Yue Liu, Shang Chen, Haoyan Huang, Adam C Midgley, Zhibo Han, Zhong-Chao Han, Qiong Li, Zongjin Li
{"title":"Ligand-Tethered Extracellular Vesicles Mediated RNA Therapy for Liver Fibrosis.","authors":"Yue Liu, Shang Chen, Haoyan Huang, Adam C Midgley, Zhibo Han, Zhong-Chao Han, Qiong Li, Zongjin Li","doi":"10.1002/adhm.202403068","DOIUrl":null,"url":null,"abstract":"<p><p>Liver fibrosis poses a significant global health burden, in which hepatic stellate cells (HSCs) play a crucial role. Targeted nanomedicine delivery systems directed at HSCs have shown immense potential in the treatment of liver fibrosis. Herein, a bioinspired material, engineered therapeutic miR-181a-5p (a miRNA known to inhibit fibrotic signaling pathways) and targeted moiety hyaluronic acid (HA) co-functionalized extracellular vesicles (EVs) are developed. HA is incorporated onto the surface of EVs using DSPE-PEG as a linker, allowing preferential binding to CD44 receptors, which are overexpressed on activated HSCs. Our results confirmed enhanced cellular uptake and improved payload delivery, as evidenced by the increased intracellular abundance of miR-181a-5p in activated HSCs and fibrotic livers. HA-equipped EVs loaded with miR-181a-5p (DPH-EVs@miR) significantly reduce HSC activation and extracellular matrix (ECM) deposition by inhibiting the TGF-β/Smad signaling pathway, thus alleviating the progression of liver fibrosis. Additionally, DPH-EVs@miR improves liver function, ameliorates inflammatory infiltration, and mitigates hepatocyte apoptosis, demonstrating superior hepatic protective effects. Collectively, this study reports a prospective nanovesicle therapeutic platform loaded with therapeutic miRNA and targeting motifs for liver fibrosis. The biomarker-guided EV-engineering technology utilized in this study provides a promising tool for nanomedicine and precision medicine.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403068"},"PeriodicalIF":10.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403068","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Liver fibrosis poses a significant global health burden, in which hepatic stellate cells (HSCs) play a crucial role. Targeted nanomedicine delivery systems directed at HSCs have shown immense potential in the treatment of liver fibrosis. Herein, a bioinspired material, engineered therapeutic miR-181a-5p (a miRNA known to inhibit fibrotic signaling pathways) and targeted moiety hyaluronic acid (HA) co-functionalized extracellular vesicles (EVs) are developed. HA is incorporated onto the surface of EVs using DSPE-PEG as a linker, allowing preferential binding to CD44 receptors, which are overexpressed on activated HSCs. Our results confirmed enhanced cellular uptake and improved payload delivery, as evidenced by the increased intracellular abundance of miR-181a-5p in activated HSCs and fibrotic livers. HA-equipped EVs loaded with miR-181a-5p (DPH-EVs@miR) significantly reduce HSC activation and extracellular matrix (ECM) deposition by inhibiting the TGF-β/Smad signaling pathway, thus alleviating the progression of liver fibrosis. Additionally, DPH-EVs@miR improves liver function, ameliorates inflammatory infiltration, and mitigates hepatocyte apoptosis, demonstrating superior hepatic protective effects. Collectively, this study reports a prospective nanovesicle therapeutic platform loaded with therapeutic miRNA and targeting motifs for liver fibrosis. The biomarker-guided EV-engineering technology utilized in this study provides a promising tool for nanomedicine and precision medicine.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
配体系留细胞外囊泡介导的 RNA 治疗肝纤维化。
肝纤维化给全球健康带来沉重负担,而肝星状细胞(HSCs)在其中发挥着至关重要的作用。针对造血干细胞的靶向纳米药物递送系统在治疗肝纤维化方面显示出巨大的潜力。本文开发了一种生物启发材料、工程治疗 miR-181a-5p(一种已知可抑制纤维化信号通路的 miRNA)和靶向分子透明质酸(HA)共同功能化的细胞外囊泡(EVs)。使用 DSPE-PEG 作为连接剂将 HA 结合到 EVs 表面,使其优先与 CD44 受体结合,CD44 受体在活化的造血干细胞上过度表达。我们的研究结果证实,活化造血干细胞和纤维化肝脏细胞内miR-181a-5p丰度的增加证明了细胞摄取的增强和有效载荷输送的改善。装载了miR-181a-5p的HA-EVs(DPH-EVs@miR)通过抑制TGF-β/Smad信号通路,显著降低了造血干细胞的活化和细胞外基质(ECM)的沉积,从而缓解了肝纤维化的进展。此外,DPH-EVs@miR 还能改善肝功能、减轻炎症浸润和肝细胞凋亡,显示出卓越的肝脏保护作用。总之,本研究报告了一种装载有治疗 miRNA 和肝纤维化靶向基因的前瞻性纳米微粒治疗平台。本研究采用的生物标志物引导的 EV 工程技术为纳米医学和精准医学提供了一种前景广阔的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
期刊最新文献
Kirigami-Inspired Stretchable Piezoelectret Sensor for Analysis and Assessment of Parkinson's Tremor. Metabolically-Driven Active Targeting of Magnetic Nanoparticles Functionalized with Glucuronic Acid to Glioblastoma: Application to MRI-Tracked Magnetic Hyperthermia Therapy. Recent Progress and Opportunities of Wearable Non-Invasive Epidermal Sensors for Skin Disease Diagnosis. A 3D Pancreatic Cancer Model with Integrated Optical Sensors for Noninvasive Metabolism Monitoring and Drug Screening (Adv. Healthcare Mater. 29/2024) Antitumor Cream: Transdermal Hydrogel Containing Liposome-Encapsulated Ruthenium Complex for Infrared-Controlled Multimodal Synergistic Therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1