Muscle-like hydrogels with fast isochoric responses and their applications as soft robots: a minireview.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Horizons Pub Date : 2024-11-12 DOI:10.1039/d4mh01187b
Hui Ying Bai, Qing Li Zhu, Han Lei Cheng, Xin Ling Wen, Zhi Jian Wang, Qiang Zheng, Zi Liang Wu
{"title":"Muscle-like hydrogels with fast isochoric responses and their applications as soft robots: a minireview.","authors":"Hui Ying Bai, Qing Li Zhu, Han Lei Cheng, Xin Ling Wen, Zhi Jian Wang, Qiang Zheng, Zi Liang Wu","doi":"10.1039/d4mh01187b","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogels with abundant water and responsiveness to external stimuli have emerged as promising candidates for artificial muscles and garnered significant interest for applications as soft actuators and robots. However, most hydrogels possess amorphous structures and exhibit slow, isotropic responses to external stimuli. These features are far inferior to real muscles, which have ordered structures and endow living organisms with programmable deformations and motions through fast, anisotropic responses in complex environments. In recent years, this issue has been addressed by a conceptual new strategy to develop muscle-like hydrogels with highly oriented nanosheets. These hydrogels exhibit fast, isochoric responses based on temperature-mediated electrostatic repulsion between charged nanosheets rather than water diffusion, which significantly advances the development of soft actuators and robots. This minireview summarizes the recent progress in muscle-like hydrogels and their applications as soft actuators and robots. We first introduce the synthesis of muscle-like hydrogels with monodomain structures and the unique mechanism for rapid and isochoric deformations. Then, the developments of hydrogels with complex ordered structures and hydrogel-based soft robots are discussed. The morphing mechanisms and motion kinematics of the hydrogel actuators and robots are highlighted. Finally, concluding remarks are given to discuss future opportunities and challenges in this field.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01187b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogels with abundant water and responsiveness to external stimuli have emerged as promising candidates for artificial muscles and garnered significant interest for applications as soft actuators and robots. However, most hydrogels possess amorphous structures and exhibit slow, isotropic responses to external stimuli. These features are far inferior to real muscles, which have ordered structures and endow living organisms with programmable deformations and motions through fast, anisotropic responses in complex environments. In recent years, this issue has been addressed by a conceptual new strategy to develop muscle-like hydrogels with highly oriented nanosheets. These hydrogels exhibit fast, isochoric responses based on temperature-mediated electrostatic repulsion between charged nanosheets rather than water diffusion, which significantly advances the development of soft actuators and robots. This minireview summarizes the recent progress in muscle-like hydrogels and their applications as soft actuators and robots. We first introduce the synthesis of muscle-like hydrogels with monodomain structures and the unique mechanism for rapid and isochoric deformations. Then, the developments of hydrogels with complex ordered structures and hydrogel-based soft robots are discussed. The morphing mechanisms and motion kinematics of the hydrogel actuators and robots are highlighted. Finally, concluding remarks are given to discuss future opportunities and challenges in this field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有快速等时反应的类肌肉水凝胶及其在软机器人中的应用:小视角。
水凝胶含水量丰富,对外部刺激反应灵敏,是人造肌肉的理想候选材料,在软致动器和机器人领域的应用也备受关注。然而,大多数水凝胶都具有无定形结构,对外部刺激的反应缓慢且各向同性。这些特点远不如真正的肌肉,因为真正的肌肉具有有序结构,并通过在复杂环境中的快速、各向异性反应赋予生物体可编程的变形和运动。近年来,这一问题已通过一种概念性新策略得到解决,即开发具有高度取向纳米片的类肌肉水凝胶。这些水凝胶基于温度介导的带电纳米片之间的静电斥力而非水扩散,表现出快速的等时反应,极大地推动了软致动器和机器人的发展。这篇微型综述总结了类肌肉水凝胶及其作为软致动器和机器人应用的最新进展。我们首先介绍了具有单域结构的类肌肉水凝胶的合成及其快速等速变形的独特机制。然后,讨论了具有复杂有序结构的水凝胶和基于水凝胶的软机器人的发展。重点介绍了水凝胶致动器和机器人的变形机制和运动运动学。最后,在结束语中讨论了该领域未来的机遇和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
期刊最新文献
Outstanding high-temperature capacitive performance in all-organic dielectrics enabled by synergistic optimization of molecular traps and aggregation structures. Piezo-to-piezo (P2P) conversion: simultaneous β-phase crystallization and poling of ultrathin, transparent and freestanding homopolymer PVDF films via MHz-order nanoelectromechanical vibration. Using a stable radical as an "electron donor" to develop a radical photosensitizer for efficient type-I photodynamic therapy. Biological metasurfaces based on tailored Luria Bertani Agar growth medium formulations for photonic applications. Hydrogen sulfide-generating semiconducting polymer nanoparticles for amplified radiodynamic-ferroptosis therapy of orthotopic glioblastoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1