Efficient synthesis of promising antidiabetic triazinoindole analogues via a solvent-free method: investigating the reaction of 1,3-diketones and 2,5-dihydro-3H-[1,2,4]triazino[5,6-b]indole-3-thione.
Ranjana Aggarwal, Prince Kumar, Mona Hooda, Rahul Singh, Parvin Kumar
{"title":"Efficient synthesis of promising antidiabetic triazinoindole analogues <i>via</i> a solvent-free method: investigating the reaction of 1,3-diketones and 2,5-dihydro-3<i>H</i>-[1,2,4]triazino[5,6-<i>b</i>]indole-3-thione.","authors":"Ranjana Aggarwal, Prince Kumar, Mona Hooda, Rahul Singh, Parvin Kumar","doi":"10.1039/d4ob01487a","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes poses a significant global health challenge, driving the search for effective management strategies. In the past years, α-amylase inhibitors have emerged as promising candidates for regulating blood sugar levels. In this concern, we have synthesized a series of novel 3-methyl-2-aroylthiazolo[3',2':2,3][1,2,4]triazino[5,6-<i>b</i>]indole derivatives <i>via</i> the regioselective reaction of 2,5-dihydro-3<i>H</i>-[1,2,4]triazino[5,6-<i>b</i>]indole-3-thione and 1,3-diketones in the presence of NBS under solvent-free conditions. Subsequently, the inhibitory potential of the newly synthesized 3-methyl-2-aroylthiazolo[3',2':2,3][1,2,4]triazino[5,6-<i>b</i>]indole derivatives was assessed against the α-amylase enzyme to probe their antidiabetic properties. <i>In vitro</i> studies revealed moderate to excellent α-amylase inhibitory activity, with IC<sub>50</sub> values ranging from 16.14 ± 0.41 to 27.69 ± 0.58 μg ml<sup>-1</sup>. Furthermore, SAR analysis showed that compounds containing halogen groups exhibited superior inhibition potential, surpassing the standard drug Acarbose (IC<sub>50</sub> = 18.64 ± 0.42 μg ml<sup>-1</sup>), particularly derivatives substituted with 4-fluoro and 2,4-dichloro groups, with IC<sub>50</sub> values of 16.14 ± 0.41 μg ml<sup>-1</sup> and 17.21 ± 0.15 μg ml<sup>-1</sup>, respectively. Additionally, molecular docking unveiled the binding modes of ligands with the active site of <i>A. oryzae</i> α-amylase. Encouragingly, the theoretical analyses closely mirrored the experimental findings, further underlining the promise of these synthetic molecules as potent α-amylase inhibitors.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ob01487a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes poses a significant global health challenge, driving the search for effective management strategies. In the past years, α-amylase inhibitors have emerged as promising candidates for regulating blood sugar levels. In this concern, we have synthesized a series of novel 3-methyl-2-aroylthiazolo[3',2':2,3][1,2,4]triazino[5,6-b]indole derivatives via the regioselective reaction of 2,5-dihydro-3H-[1,2,4]triazino[5,6-b]indole-3-thione and 1,3-diketones in the presence of NBS under solvent-free conditions. Subsequently, the inhibitory potential of the newly synthesized 3-methyl-2-aroylthiazolo[3',2':2,3][1,2,4]triazino[5,6-b]indole derivatives was assessed against the α-amylase enzyme to probe their antidiabetic properties. In vitro studies revealed moderate to excellent α-amylase inhibitory activity, with IC50 values ranging from 16.14 ± 0.41 to 27.69 ± 0.58 μg ml-1. Furthermore, SAR analysis showed that compounds containing halogen groups exhibited superior inhibition potential, surpassing the standard drug Acarbose (IC50 = 18.64 ± 0.42 μg ml-1), particularly derivatives substituted with 4-fluoro and 2,4-dichloro groups, with IC50 values of 16.14 ± 0.41 μg ml-1 and 17.21 ± 0.15 μg ml-1, respectively. Additionally, molecular docking unveiled the binding modes of ligands with the active site of A. oryzae α-amylase. Encouragingly, the theoretical analyses closely mirrored the experimental findings, further underlining the promise of these synthetic molecules as potent α-amylase inhibitors.