Zhao-Wei Zhu , Ge Li , Guang-Geng Wu , Yu-Jing Zhang , Yu-Rong Bai , Bi-Qin Lai , Ying Ding , Xiang Zeng , Yuan-Huan Ma , Shu Liu , Rui Wang , Jing-Hua Liang , Yang-Bin Xu , Bo He , Yuan-Shan Zeng
{"title":"Transplantation of peripheral nerve tissueoid based on a decellularized optic nerve scaffold to restore rat hindlimb sensory and movement functions","authors":"Zhao-Wei Zhu , Ge Li , Guang-Geng Wu , Yu-Jing Zhang , Yu-Rong Bai , Bi-Qin Lai , Ying Ding , Xiang Zeng , Yuan-Huan Ma , Shu Liu , Rui Wang , Jing-Hua Liang , Yang-Bin Xu , Bo He , Yuan-Shan Zeng","doi":"10.1016/j.biomaterials.2024.122949","DOIUrl":null,"url":null,"abstract":"<div><div>Peripheral nerve injury (PNI) involving the loss of sensory and movement functions is challenging to repair. Although the gold standard of PNI repair is still the use of autologous nerve grafts, the destruction of the donor side is inevitable. In the present study, peripheral nerve tissueoids (PNTs) composed of a Schwann cell (SC)-based neurotrophin-3 (NT-3) delivery system and a decellularized optic nerve (DON) with naturally oriented channels were engineered to investigate the mechanism of PNTs in nerve regeneration. Proteomic analysis and mRNA sequencing revealed that PNTs have the advantage of promoting nerve regeneration by the three mechanisms of chemotaxis, adhesion and intrinsic mobilisation. The results demonstrated that a local NT-3-enriched pool was constructed by laminin γ3 (LAMC3) in PNTs, creating a niche for the colonization of TrkC-positive SCs, attraction of axons to the defect/graft area, and remyelination. In addition, LAMC3 in PNTs can rapidly promote axon adhesion through integrin aVβ6 and can precisely guide long projecting axons to target tissues. Furthermore, the interactions among the NT-3/TrkC, LAMC3/integrin aVβ6 and the scaffold synergistically activate the PI3K-AKT signalling pathway in damaged neurons, further stimulating the intrinsic regenerative drive within the neurons to ultimately achieve the rapid reinnervation and the improvement of sensory and movement functions in the hindlimb.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"315 ","pages":"Article 122949"},"PeriodicalIF":12.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961224004848","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Peripheral nerve injury (PNI) involving the loss of sensory and movement functions is challenging to repair. Although the gold standard of PNI repair is still the use of autologous nerve grafts, the destruction of the donor side is inevitable. In the present study, peripheral nerve tissueoids (PNTs) composed of a Schwann cell (SC)-based neurotrophin-3 (NT-3) delivery system and a decellularized optic nerve (DON) with naturally oriented channels were engineered to investigate the mechanism of PNTs in nerve regeneration. Proteomic analysis and mRNA sequencing revealed that PNTs have the advantage of promoting nerve regeneration by the three mechanisms of chemotaxis, adhesion and intrinsic mobilisation. The results demonstrated that a local NT-3-enriched pool was constructed by laminin γ3 (LAMC3) in PNTs, creating a niche for the colonization of TrkC-positive SCs, attraction of axons to the defect/graft area, and remyelination. In addition, LAMC3 in PNTs can rapidly promote axon adhesion through integrin aVβ6 and can precisely guide long projecting axons to target tissues. Furthermore, the interactions among the NT-3/TrkC, LAMC3/integrin aVβ6 and the scaffold synergistically activate the PI3K-AKT signalling pathway in damaged neurons, further stimulating the intrinsic regenerative drive within the neurons to ultimately achieve the rapid reinnervation and the improvement of sensory and movement functions in the hindlimb.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.