Anita Poćwierz-Kotus, Christopher D McQuaid, Marek R Lipinski, Małgorzata Zbawicka, Roman Wenne
{"title":"SNPs Analysis Indicates Non-Uniform Origins of Invasive Mussels (<i>Mytilus galloprovincialis</i> Lamarck, 1819) on the Southern African Coast.","authors":"Anita Poćwierz-Kotus, Christopher D McQuaid, Marek R Lipinski, Małgorzata Zbawicka, Roman Wenne","doi":"10.3390/ani14213080","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the origins of invasive species is necessary to manage them and predict their potential for spreading. The mussel genus <i>Mytilus</i> forms an important component of coastal ecosystems in the northern and southern hemispheres. <i>M. galloprovincialis</i> is an important invasive species globally, first appearing on the South African coast in the 1970s. Studies using nuclear and mitochondrial DNA indicated that the invasion probably originated from the north-east Atlantic. We used fifty-five polymorphic SNPs to genotype mussels from sites across the coast of South Africa with reference samples from the Mediterranean, the Atlantic, and New Zealand to test for possible introgression of the northern and southern taxa. Low levels of genetic differentiation were confirmed, and all samples grouped with reference samples of the Atlantic form of <i>M. galloprovincialis</i>, supporting previous studies. The SNP genotyping, however, allowed the detection of some individuals with genotypes typical of the Mediterranean, indicating that introduced populations in South Africa do not have a uniform origin. The initial population introduced to South Africa may have been genetically heterogenous from the start, coming from a region influenced by both the Atlantic and Mediterranean. Alternatively, multiple introductions may have taken place, originating from different regions, specifically North Africa, southern Europe, and the Mediterranean, building up the final heterogeneity.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"14 21","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545541/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani14213080","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the origins of invasive species is necessary to manage them and predict their potential for spreading. The mussel genus Mytilus forms an important component of coastal ecosystems in the northern and southern hemispheres. M. galloprovincialis is an important invasive species globally, first appearing on the South African coast in the 1970s. Studies using nuclear and mitochondrial DNA indicated that the invasion probably originated from the north-east Atlantic. We used fifty-five polymorphic SNPs to genotype mussels from sites across the coast of South Africa with reference samples from the Mediterranean, the Atlantic, and New Zealand to test for possible introgression of the northern and southern taxa. Low levels of genetic differentiation were confirmed, and all samples grouped with reference samples of the Atlantic form of M. galloprovincialis, supporting previous studies. The SNP genotyping, however, allowed the detection of some individuals with genotypes typical of the Mediterranean, indicating that introduced populations in South Africa do not have a uniform origin. The initial population introduced to South Africa may have been genetically heterogenous from the start, coming from a region influenced by both the Atlantic and Mediterranean. Alternatively, multiple introductions may have taken place, originating from different regions, specifically North Africa, southern Europe, and the Mediterranean, building up the final heterogeneity.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).