{"title":"Construction and Validation of a Novel T/NK-Cell Prognostic Signature for Pancreatic Cancer Based on Single-Cell RNA Sequencing.","authors":"Yu Wang, Cong Zhang, Jianlu Zhang, Haoran Huang, Junchao Guo","doi":"10.1080/07357907.2024.2424328","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Evidence with regards to the distinction between primary and metastatic tumors in pancreatic cancer and driving factors for metastases remains limited.</p><p><strong>Methods: </strong>Single-cell RNA sequencing (scRNA-seq) was conducted on metastatic pancreatic cancer. Bioinformatics analysis on relevant sequencing data was used to construct a risk model to predict patient prognosis. Furthermore, immune infiltration and metabolic differences were assessed. The biological function of key differential genes was evaluated.</p><p><strong>Results: </strong>Paired primary and metastatic tumor tissues from 3 pancreatic cancer patients were collected and conducted scRNA-seq. Subsequently, the T/NK cell subgroup was the most different cell type between primary tumors and liver metastases and was selected for further analysis. Eventually, 6 specifically expressed genes of T/NK cells (<i>B2M</i>, <i>ZFP36L2</i>, <i>ANXA1</i>, <i>ARL4C</i>, <i>TSPYL2</i>, <i>FYN</i>) were used constructing the prognostic model. The stability of this model was validated by an external cohort. Meanwhile, different immune infiltration abundances occurred between high and low risk groups stratified by the model. The high-risk group had a stronger metabolic capability.</p><p><strong>Conclusions: </strong>A novel prognostic T/NK-cell signature for pancreatic cancer was constructed based on scRNA-seq data and externally validated. The involved key genes may play a role in multiple metabolic pathways of metastasis and affect the tumor immune microenvironment.</p>","PeriodicalId":9463,"journal":{"name":"Cancer Investigation","volume":" ","pages":"876-892"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/07357907.2024.2424328","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Evidence with regards to the distinction between primary and metastatic tumors in pancreatic cancer and driving factors for metastases remains limited.
Methods: Single-cell RNA sequencing (scRNA-seq) was conducted on metastatic pancreatic cancer. Bioinformatics analysis on relevant sequencing data was used to construct a risk model to predict patient prognosis. Furthermore, immune infiltration and metabolic differences were assessed. The biological function of key differential genes was evaluated.
Results: Paired primary and metastatic tumor tissues from 3 pancreatic cancer patients were collected and conducted scRNA-seq. Subsequently, the T/NK cell subgroup was the most different cell type between primary tumors and liver metastases and was selected for further analysis. Eventually, 6 specifically expressed genes of T/NK cells (B2M, ZFP36L2, ANXA1, ARL4C, TSPYL2, FYN) were used constructing the prognostic model. The stability of this model was validated by an external cohort. Meanwhile, different immune infiltration abundances occurred between high and low risk groups stratified by the model. The high-risk group had a stronger metabolic capability.
Conclusions: A novel prognostic T/NK-cell signature for pancreatic cancer was constructed based on scRNA-seq data and externally validated. The involved key genes may play a role in multiple metabolic pathways of metastasis and affect the tumor immune microenvironment.
期刊介绍:
Cancer Investigation is one of the most highly regarded and recognized journals in the field of basic and clinical oncology. It is designed to give physicians a comprehensive resource on the current state of progress in the cancer field as well as a broad background of reliable information necessary for effective decision making. In addition to presenting original papers of fundamental significance, it also publishes reviews, essays, specialized presentations of controversies, considerations of new technologies and their applications to specific laboratory problems, discussions of public issues, miniseries on major topics, new and experimental drugs and therapies, and an innovative letters to the editor section. One of the unique features of the journal is its departmentalized editorial sections reporting on more than 30 subject categories covering the broad spectrum of specialized areas that together comprise the field of oncology. Edited by leading physicians and research scientists, these sections make Cancer Investigation the prime resource for clinicians seeking to make sense of the sometimes-overwhelming amount of information available throughout the field. In addition to its peer-reviewed clinical research, the journal also features translational studies that bridge the gap between the laboratory and the clinic.