A statistical-based automatic detection of a low-contrast object in the ACR CT phantom for measuring contrast-to-noise ratio of CT images.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Biomedical Physics & Engineering Express Pub Date : 2024-11-20 DOI:10.1088/2057-1976/ad90e9
Choirul Anam, Riska Amilia, Ariij Naufal, Toshioh Fujibuchi, Geoff Dougherty
{"title":"A statistical-based automatic detection of a low-contrast object in the ACR CT phantom for measuring contrast-to-noise ratio of CT images.","authors":"Choirul Anam, Riska Amilia, Ariij Naufal, Toshioh Fujibuchi, Geoff Dougherty","doi":"10.1088/2057-1976/ad90e9","DOIUrl":null,"url":null,"abstract":"<p><p><i>Purpose</i>. This study aimed to develop a new method for automated contrast-to-noise ratio (CNR) measurement using the low-contrast object in the ACR computed tomography (CT) phantom.<i>Methods</i>. The proposed method for CNR measurement was based on statistical criteria. A region of interest (ROI) was placed in a specific radial location and was then rotated around 360° in increments of 2°. At each position, the average CT number within the ROI was calculated. After one complete rotation, a profile of the average CT number around the full rotation was obtained. The center coordinate of the low-contrast object was determined from the maximum value of the profile. The CNR was calculated based on the average CT number and noise within the ROI in the low-contrast object and the ROI in the background, i.e., at the center of the phantom. The proposed method was used to evaluate CNR from images scanned with various phantom rotations, images with various noise levels (tube currents), and images from 25 CT scanners. The results were compared to a previous method based on a threshold approach.<i>Results</i>. The proposed method successfully placed the ROI properly in the center of a low-contrast object for variations of phantom rotation and tube current, whereas was not properly located in the center of the low-contrast object using the previous method. In addition, from 325 image samples of the 25 CT scanners, the proposed method successfully (100%) located the ROI within the low-contrast objects of all images used. The success rate of the previous method was only 58%.<i>Conclusion</i>. A new method for measuring CNR in the ACR CT phantom has been proposed and implemented. It is more powerful than a previous method based on a threshold approach.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad90e9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose. This study aimed to develop a new method for automated contrast-to-noise ratio (CNR) measurement using the low-contrast object in the ACR computed tomography (CT) phantom.Methods. The proposed method for CNR measurement was based on statistical criteria. A region of interest (ROI) was placed in a specific radial location and was then rotated around 360° in increments of 2°. At each position, the average CT number within the ROI was calculated. After one complete rotation, a profile of the average CT number around the full rotation was obtained. The center coordinate of the low-contrast object was determined from the maximum value of the profile. The CNR was calculated based on the average CT number and noise within the ROI in the low-contrast object and the ROI in the background, i.e., at the center of the phantom. The proposed method was used to evaluate CNR from images scanned with various phantom rotations, images with various noise levels (tube currents), and images from 25 CT scanners. The results were compared to a previous method based on a threshold approach.Results. The proposed method successfully placed the ROI properly in the center of a low-contrast object for variations of phantom rotation and tube current, whereas was not properly located in the center of the low-contrast object using the previous method. In addition, from 325 image samples of the 25 CT scanners, the proposed method successfully (100%) located the ROI within the low-contrast objects of all images used. The success rate of the previous method was only 58%.Conclusion. A new method for measuring CNR in the ACR CT phantom has been proposed and implemented. It is more powerful than a previous method based on a threshold approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于统计学原理自动检测 ACR CT 模型中的低对比度物体,用于测量 CT 图像的对比度-噪声比。
目的: 本研究旨在开发一种新方法,利用 ACR CT 模型中的低对比度物体自动测量对比度-噪声比 (CNR)。 方法: ACR CT 464 模型由安装在 25 家不同医院的 25 台 CT 扫描仪扫描。将 AROI 放置在特定的径向位置,然后以 20 为增量旋转 3600 次。在每个位置,计算 ROI 内的平均 CT 数。旋转一圈后,就能得到围绕 3600 度的平均 CT 数剖面图。根据轮廓的最大值确定低对比度物体的中心坐标。CNR 是根据低对比度物体 ROI 和背景 ROI(即模型中心)内的平均 CT 数和噪声计算得出的。结果: 从 25 台 CT 扫描仪的 325 个图像样本中,建议的方法成功(100%)定位了所有图像中低对比度物体内的 ROI。而分割方法的成功率仅为 56%。 结论: 提出并实施了一种在 ACR CT 模型中测量 CNR 的新方法。它比以前基于分割的方法更强大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
期刊最新文献
Validation of the SIMIND simulation code using the myocardial phantom HL. Optimized scintillation imaging in low dose rate and bright room light conditions. Computer-aided diagnosis of early-stage Retinopathy of Prematurity in neonatal fundus images using artificial intelligence. Green hydrothermal synthesis of gallic acid carbon dots: characterization and cytotoxic effects on colorectal cancer cell line. Nanodosimetric investigation of the track structure of therapeutic carbon ion radiation part2: detailed simulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1