Comparing the performance of a femoral shaft fracture fixation using implants with biodegradable and non-biodegradable materials.

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Biomedical Physics & Engineering Express Pub Date : 2024-11-20 DOI:10.1088/2057-1976/ad90e7
Sina Taghipour, Farid Vakili-Tahami, Tajbakhsh Navid Chakherlou
{"title":"Comparing the performance of a femoral shaft fracture fixation using implants with biodegradable and non-biodegradable materials.","authors":"Sina Taghipour, Farid Vakili-Tahami, Tajbakhsh Navid Chakherlou","doi":"10.1088/2057-1976/ad90e7","DOIUrl":null,"url":null,"abstract":"<p><p>Orthopedic injuries, such as femur shaft fractures, often require surgical intervention to promote healing and functional recovery. Metal plate implants are widely used due to their mechanical strength and biocompatibility. Biodegradable metal plate implants, including those made from magnesium, zinc, and iron alloys, offer distinct advantages over non-biodegradable materials like stainless steel, titanium, and cobalt alloys. Biodegradable implants gradually replace native bone tissue, reducing the need for additional surgeries and improving patient recovery. However, non-biodegradable implants remain popular due to their stability, corrosion resistance, and biocompatibility. This study focuses on designing an implant plate for treating transverse femoral shaft fractures during the walking cycle. The primary objective is to conduct a comprehensive finite element analysis (FEA) of a fractured femur's stabilization using various biodegradable and non-biodegradable materials. The study assesses the efficacy of different implant materials, discusses implant design, and identifies the optimal materials for femoral stabilization. Results indicate that magnesium alloy is superior among biodegradable materials, while titanium alloy is preferred among non-biodegradable options. The findings suggest that magnesium alloy is the recommended material for bone implants due to its advantages over non-degradable alternatives.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad90e7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Orthopedic injuries, such as femur shaft fractures, often require surgical intervention to promote healing and functional recovery. Metal plate implants are widely used due to their mechanical strength and biocompatibility. Biodegradable metal plate implants, including those made from magnesium, zinc, and iron alloys, offer distinct advantages over non-biodegradable materials like stainless steel, titanium, and cobalt alloys. Biodegradable implants gradually replace native bone tissue, reducing the need for additional surgeries and improving patient recovery. However, non-biodegradable implants remain popular due to their stability, corrosion resistance, and biocompatibility. This study focuses on designing an implant plate for treating transverse femoral shaft fractures during the walking cycle. The primary objective is to conduct a comprehensive finite element analysis (FEA) of a fractured femur's stabilization using various biodegradable and non-biodegradable materials. The study assesses the efficacy of different implant materials, discusses implant design, and identifies the optimal materials for femoral stabilization. Results indicate that magnesium alloy is superior among biodegradable materials, while titanium alloy is preferred among non-biodegradable options. The findings suggest that magnesium alloy is the recommended material for bone implants due to its advantages over non-degradable alternatives.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比较使用可生物降解和不可生物降解材料植入物进行股骨干骨折固定的性能。
骨科损伤,如股骨轴骨折,通常需要手术干预来促进愈合和功能恢复。金属板植入物因其机械强度和生物相容性而被广泛使用。与不锈钢、钛和钴合金等不可生物降解的材料相比,可生物降解的金属板植入物(包括由镁、锌和铁合金制成的植入物)具有明显的优势。生物可降解植入物会逐渐取代原生骨组织,从而减少额外手术的需要,改善患者的恢复情况。然而,非生物降解植入物因其稳定性、耐腐蚀性和生物相容性,仍然很受欢迎。本研究的重点是设计一种植入板,用于治疗行走周期中的股骨干横向骨折。 主要目的是使用各种可降解和不可降解材料对股骨骨折的稳定进行全面的有限元分析(FEA)。该研究评估了不同植入材料的功效,讨论了植入设计,并确定了稳定股骨的最佳材料。结果表明,在可生物降解材料中,镁合金更胜一筹,而在不可生物降解材料中,钛合金更受青睐。研究结果表明,镁合金是骨植入物的推荐材料,因为它比不可降解材料更具优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
期刊最新文献
Dose compensation for decreased biological effective dose due to intrafractional interruption during radiotherapy: integration with a commercial treatment planning system. Open-window MSR Design with Active Magnetic Compensation Coil based on COMSOL Multiphysics. A new method to assess the performance of anti-scatter grids in x-ray projection imaging. Effect of tissue viscoelasticity on delivered mechanical power in a physical respiratory system model: distinguishing between airway and tissue resistance. Local field potential-based brain-machine interface to inhibit epileptic seizures by spinal cord electrical stimulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1