{"title":"Predicting bacterial transcription factor binding sites through machine learning and structural characterization based on DNA duplex stability.","authors":"André Borges Farias, Gustavo Sganzerla Martinez, Edgardo Galán-Vásquez, Marisa Fabiana Nicolás, Ernesto Pérez-Rueda","doi":"10.1093/bib/bbae581","DOIUrl":null,"url":null,"abstract":"<p><p>Transcriptional factors (TFs) in bacteria play a crucial role in gene regulation by binding to specific DNA sequences, thereby assisting in the activation or repression of genes. Despite their central role, deciphering shape recognition of bacterial TFs-DNA interactions remains an intricate challenge. A deeper understanding of DNA secondary structures could greatly enhance our knowledge of how TFs recognize and interact with DNA, thereby elucidating their biological function. In this study, we employed machine learning algorithms to predict transcription factor binding sites (TFBS) and classify them as directed-repeat (DR) or inverted-repeat (IR). To accomplish this, we divided the set of TFBS nucleotide sequences by size, ranging from 8 to 20 base pairs, and converted them into thermodynamic data known as DNA duplex stability (DDS). Our results demonstrate that the Random Forest algorithm accurately predicts TFBS with an average accuracy of over 82% and effectively distinguishes between IR and DR with an accuracy of 89%. Interestingly, upon converting the base pairs of several TFBS-IR into DDS values, we observed a symmetric profile typical of the palindromic structure associated with these architectures. This study presents a novel TFBS prediction model based on a DDS characteristic that may indicate how respective proteins interact with base pairs, thus providing insights into molecular mechanisms underlying bacterial TFs-DNA interaction.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562833/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae581","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Transcriptional factors (TFs) in bacteria play a crucial role in gene regulation by binding to specific DNA sequences, thereby assisting in the activation or repression of genes. Despite their central role, deciphering shape recognition of bacterial TFs-DNA interactions remains an intricate challenge. A deeper understanding of DNA secondary structures could greatly enhance our knowledge of how TFs recognize and interact with DNA, thereby elucidating their biological function. In this study, we employed machine learning algorithms to predict transcription factor binding sites (TFBS) and classify them as directed-repeat (DR) or inverted-repeat (IR). To accomplish this, we divided the set of TFBS nucleotide sequences by size, ranging from 8 to 20 base pairs, and converted them into thermodynamic data known as DNA duplex stability (DDS). Our results demonstrate that the Random Forest algorithm accurately predicts TFBS with an average accuracy of over 82% and effectively distinguishes between IR and DR with an accuracy of 89%. Interestingly, upon converting the base pairs of several TFBS-IR into DDS values, we observed a symmetric profile typical of the palindromic structure associated with these architectures. This study presents a novel TFBS prediction model based on a DDS characteristic that may indicate how respective proteins interact with base pairs, thus providing insights into molecular mechanisms underlying bacterial TFs-DNA interaction.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.