{"title":"Construction of a genome-editing system for the thermophilic actinomycete Streptomyces thermodiastaticus K5 strain.","authors":"Kenji Yamagishi, Masakazu Ike, Ken Tokuyasu","doi":"10.1093/bbb/zbae157","DOIUrl":null,"url":null,"abstract":"<p><p>Thermophilic actinomycetes significantly contribute to the terrestrial carbon cycle via the rapid degradation of lignocellulosic polysaccharides in composts. In this study, a genome-editing system was constructed for the thermophilic actinomycete Streptomyces thermodiastaticus K5 strain, which was isolated from compost. The genome-editing plasmid (pGEK5) harboring nickase Cas9 was derived from the high-copy plasmid pL99 and used for the K5 strain. It was found that pGEK5 could easily be lost from the transformed clone through cultivation on apramycin-free medium and spore formation, enabling its reuse for subsequent genome-editing cycles. With the aid of this plasmid, mutations were sequentially introduced to 2 uracil-DNA glycosylase genes (Udg1 and Udg2) and 1 β-glucosidase gene (Bgl1). Thus, the genome-editing system using pGEK5 enables us to start the functional modification of this thermophilic actinomycete, especially for improved conversion of lignocellulosic biomass.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":"80-87"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae157","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermophilic actinomycetes significantly contribute to the terrestrial carbon cycle via the rapid degradation of lignocellulosic polysaccharides in composts. In this study, a genome-editing system was constructed for the thermophilic actinomycete Streptomyces thermodiastaticus K5 strain, which was isolated from compost. The genome-editing plasmid (pGEK5) harboring nickase Cas9 was derived from the high-copy plasmid pL99 and used for the K5 strain. It was found that pGEK5 could easily be lost from the transformed clone through cultivation on apramycin-free medium and spore formation, enabling its reuse for subsequent genome-editing cycles. With the aid of this plasmid, mutations were sequentially introduced to 2 uracil-DNA glycosylase genes (Udg1 and Udg2) and 1 β-glucosidase gene (Bgl1). Thus, the genome-editing system using pGEK5 enables us to start the functional modification of this thermophilic actinomycete, especially for improved conversion of lignocellulosic biomass.
期刊介绍:
Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).