SHR-1806, a robust OX40 agonist to promote T cell-mediated antitumor immunity.

IF 4.4 4区 医学 Q2 ONCOLOGY Cancer Biology & Therapy Pub Date : 2024-12-31 Epub Date: 2024-11-14 DOI:10.1080/15384047.2024.2426305
Jun Zhang, Lei Zhou, Xing Sun, Yuan Lin, Jimin Yuan, Changyong Yang, Cheng Liao
{"title":"SHR-1806, a robust OX40 agonist to promote T cell-mediated antitumor immunity.","authors":"Jun Zhang, Lei Zhou, Xing Sun, Yuan Lin, Jimin Yuan, Changyong Yang, Cheng Liao","doi":"10.1080/15384047.2024.2426305","DOIUrl":null,"url":null,"abstract":"<p><p>Anti-CTLA-4 and anti-PD-1/PD-L1 antibodies have significantly revolutionized cancer immunotherapy. However, the persistent challenge of low patient response rates necessitates novel approaches to overcome immune tolerance. Targeting immunostimulatory signaling may have a better chance of success for its ability to enhance effector T cell (Teff) function and expansion for antitumor immunity. Among various immunostimulatory pathways, the evidence underscores the potential of activating OX40-OX40L signaling to enhance CD8<sup>+</sup> T cell generation and maintenance while suppressing regulatory T cells (Tregs) within the tumor microenvironment (TME). In this study, we introduce a potent agonistic anti-OX40 antibody, SHR-1806, designed to target OX40 receptors on activated T cells and amplify antitumor immune responses. SHR-1806 demonstrates a high affinity and specificity for human OX40 protein, eliciting FcγR-mediated agonistic effects, T cell activation, antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) activities <i>in vitro</i>. In human OX40 knock-in mice bearing MC38 tumor, SHR-1806 shows a trend toward a higher potency than the reference anti-OX40 antibody produced in-house, GPX4, an analog of pogalizumab, the most advanced drug candidate developed by Roche. Furthermore, SHR-1806 displays promising anti-tumor activity alone or in combination with toll-like receptor 7 (TLR7) agonist or PD-L1 inhibitor in mouse models. Evaluation of SHR-1806 in rhesus monkeys indicates a favorable safety profile and typical pharmacokinetic characteristics. Thus, SHR-1806 emerges as a robust OX40 agonist with promising therapeutic potential.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2426305"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572088/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2024.2426305","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Anti-CTLA-4 and anti-PD-1/PD-L1 antibodies have significantly revolutionized cancer immunotherapy. However, the persistent challenge of low patient response rates necessitates novel approaches to overcome immune tolerance. Targeting immunostimulatory signaling may have a better chance of success for its ability to enhance effector T cell (Teff) function and expansion for antitumor immunity. Among various immunostimulatory pathways, the evidence underscores the potential of activating OX40-OX40L signaling to enhance CD8+ T cell generation and maintenance while suppressing regulatory T cells (Tregs) within the tumor microenvironment (TME). In this study, we introduce a potent agonistic anti-OX40 antibody, SHR-1806, designed to target OX40 receptors on activated T cells and amplify antitumor immune responses. SHR-1806 demonstrates a high affinity and specificity for human OX40 protein, eliciting FcγR-mediated agonistic effects, T cell activation, antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) activities in vitro. In human OX40 knock-in mice bearing MC38 tumor, SHR-1806 shows a trend toward a higher potency than the reference anti-OX40 antibody produced in-house, GPX4, an analog of pogalizumab, the most advanced drug candidate developed by Roche. Furthermore, SHR-1806 displays promising anti-tumor activity alone or in combination with toll-like receptor 7 (TLR7) agonist or PD-L1 inhibitor in mouse models. Evaluation of SHR-1806 in rhesus monkeys indicates a favorable safety profile and typical pharmacokinetic characteristics. Thus, SHR-1806 emerges as a robust OX40 agonist with promising therapeutic potential.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
促进 T 细胞介导的抗肿瘤免疫的强效 OX40 激动剂 SHR-1806。
抗CTLA-4和抗PD-1/PD-L1抗体大大革新了癌症免疫疗法。然而,患者应答率低这一长期存在的挑战需要新的方法来克服免疫耐受。以免疫刺激信号传导为靶点,可以增强效应T细胞(Teff)的功能和扩增,从而提高抗肿瘤免疫力,因此成功的机会更大。在各种免疫刺激通路中,有证据强调激活 OX40-OX40L 信号可增强 CD8+ T 细胞的生成和维持,同时抑制肿瘤微环境(TME)中的调节性 T 细胞(Tregs)。在这项研究中,我们引入了一种强效激动型抗 OX40 抗体 SHR-1806,其设计目的是靶向活化 T 细胞上的 OX40 受体,扩大抗肿瘤免疫反应。SHR-1806 对人 OX40 蛋白具有高亲和力和特异性,能在体外激发 FcγR 介导的激动效应、T 细胞活化、抗体依赖性细胞毒性(ADCC)和补体依赖性细胞毒性(CDC)活性。在携带 MC38 肿瘤的人类 OX40 基因敲入小鼠中,SHR-1806 显示出比内部生产的参考抗 OX40 抗体 GPX4(罗氏开发的最先进候选药物 pogalizumab 的类似物)效力更高的趋势。此外,在小鼠模型中,SHR-1806单独或与toll样受体7(TLR7)激动剂或PD-L1抑制剂联合使用都显示出良好的抗肿瘤活性。在恒河猴体内对 SHR-1806 的评估表明,它具有良好的安全性和典型的药代动力学特征。因此,SHR-1806 是一种具有治疗潜力的强效 OX40 激动剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer Biology & Therapy
Cancer Biology & Therapy 医学-肿瘤学
CiteScore
7.00
自引率
0.00%
发文量
60
审稿时长
2.3 months
期刊介绍: Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.
期刊最新文献
Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer. Correction. WYC-209 inhibited GC malignant progression by down-regulating WNT4 through RARα. Efficacy and pharmacodynamic effect of anti-CD73 and anti-PD-L1 monoclonal antibodies in combination with cytotoxic therapy: observations from mouse tumor models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1