The tubulin polymerization inhibitor gambogenic acid induces myelodysplastic syndrome cell apoptosis through upregulation of Fas expression mediated by the NF-κB signaling pathway.

IF 4.4 4区 医学 Q2 ONCOLOGY Cancer Biology & Therapy Pub Date : 2024-12-31 Epub Date: 2024-11-14 DOI:10.1080/15384047.2024.2427374
Cheng Zhong, Shijun Wang, Lei Xia, Xiaoman Yang, Liguang Fang, Xianyi Zhang, Mengyue Wang, Haijun Zhao, Guanghui Wang, Jinglong Wu, Ruijian Guo, Ming Zhong, Eiichi Gohda
{"title":"The tubulin polymerization inhibitor gambogenic acid induces myelodysplastic syndrome cell apoptosis through upregulation of Fas expression mediated by the NF-κB signaling pathway.","authors":"Cheng Zhong, Shijun Wang, Lei Xia, Xiaoman Yang, Liguang Fang, Xianyi Zhang, Mengyue Wang, Haijun Zhao, Guanghui Wang, Jinglong Wu, Ruijian Guo, Ming Zhong, Eiichi Gohda","doi":"10.1080/15384047.2024.2427374","DOIUrl":null,"url":null,"abstract":"<p><p>The development of an effective treatment for myelodysplastic syndrome (MDS) is needed due to the insufficient efficacy of current therapies. Gambogenic acid (GNA) is a xanthone constituent of gamboge, a resin secreted by <i>Garcinia hanburyi</i> Hook. f. GNA exhibits antitumor and apoptosis-inducing activities against some cancer cells, but the mechanism is unknown. This study aimed to validate the anti-proliferative and apoptosis-inducing effects of GNA on MDS cells and to elucidate the mechanisms underlying those activities. Apoptosis, proliferation and cell cycle of MDS-L cells were assessed by the caspase 3/7 assay, cell counting and flow cytometry, respectively. The levels of apoptotic, tubulin, NF-κB pathways, and Fas proteins were determined by Western blotting. CRISPR/Cas9 knockout (KO) plasmids were used to generate KO cells of p65 and Fas. MDS cell growth in a xenograft model was evaluated by the AkaBLI system. GNA induced MDS cell apoptosis, accompanied by a reduction in the anti-apoptotic protein MCL-1 expression, and inhibited their growth in vitro and in vivo. GNA combined with the MCL-1 inhibitor MIK665 potently suppressed the proliferation of MDS cells. GNA interfered with tubulin polymerization, resulting in G2/M arrest. GNA induced NF-κB activation and upregulation of Fas, the latter of which was inhibited by p65 KO. GNA-induced apoptosis was attenuated in either p65 KO or Fas KO cells. These results demonstrate that GNA inhibited tubulin polymerization and induced apoptosis of MDS cells through upregulation of Fas expression mediated by the NF-κB signaling pathway, suggesting a chemotherapeutic strategy for MDS by microtubule dynamics disruption.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2427374"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572293/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2024.2427374","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of an effective treatment for myelodysplastic syndrome (MDS) is needed due to the insufficient efficacy of current therapies. Gambogenic acid (GNA) is a xanthone constituent of gamboge, a resin secreted by Garcinia hanburyi Hook. f. GNA exhibits antitumor and apoptosis-inducing activities against some cancer cells, but the mechanism is unknown. This study aimed to validate the anti-proliferative and apoptosis-inducing effects of GNA on MDS cells and to elucidate the mechanisms underlying those activities. Apoptosis, proliferation and cell cycle of MDS-L cells were assessed by the caspase 3/7 assay, cell counting and flow cytometry, respectively. The levels of apoptotic, tubulin, NF-κB pathways, and Fas proteins were determined by Western blotting. CRISPR/Cas9 knockout (KO) plasmids were used to generate KO cells of p65 and Fas. MDS cell growth in a xenograft model was evaluated by the AkaBLI system. GNA induced MDS cell apoptosis, accompanied by a reduction in the anti-apoptotic protein MCL-1 expression, and inhibited their growth in vitro and in vivo. GNA combined with the MCL-1 inhibitor MIK665 potently suppressed the proliferation of MDS cells. GNA interfered with tubulin polymerization, resulting in G2/M arrest. GNA induced NF-κB activation and upregulation of Fas, the latter of which was inhibited by p65 KO. GNA-induced apoptosis was attenuated in either p65 KO or Fas KO cells. These results demonstrate that GNA inhibited tubulin polymerization and induced apoptosis of MDS cells through upregulation of Fas expression mediated by the NF-κB signaling pathway, suggesting a chemotherapeutic strategy for MDS by microtubule dynamics disruption.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
管蛋白聚合抑制剂甘原酸通过NF-κB信号通路介导的Fas表达上调诱导骨髓增生异常综合征细胞凋亡。
由于目前的疗法疗效不佳,因此需要开发一种有效的骨髓增生异常综合症(MDS)治疗方法。甘草酸(GNA)是甘草中的一种黄酮类成分,甘草是汉巴里藤(Garcinia hanburyi Hook.f.)分泌的一种树脂。GNA对一些癌细胞具有抗肿瘤和诱导凋亡的活性,但其机制尚不清楚。本研究旨在验证 GNA 对 MDS 细胞的抗增殖和凋亡诱导作用,并阐明其作用机制。研究采用caspase 3/7检测法、细胞计数法和流式细胞术分别评估了MDS-L细胞的凋亡、增殖和细胞周期。凋亡蛋白、微管蛋白、NF-κB通路和Fas蛋白的水平通过Western印迹法测定。使用 CRISPR/Cas9 基因敲除(KO)质粒生成 p65 和 Fas 的 KO 细胞。用AkaBLI系统评估了MDS细胞在异种移植模型中的生长情况。GNA 可诱导 MDS 细胞凋亡,同时降低抗凋亡蛋白 MCL-1 的表达,并抑制其体外和体内生长。GNA 与 MCL-1 抑制剂 MIK665 联用可有效抑制 MDS 细胞的增殖。GNA 干扰微管蛋白聚合,导致 G2/M 停滞。GNA 诱导 NF-κB 活化和 Fas 上调,p65 KO 可抑制后者。在 p65 KO 或 Fas KO 的细胞中,GNA 诱导的细胞凋亡均有所减弱。这些结果表明,GNA通过NF-κB信号通路介导的Fas表达上调,抑制了MDS细胞的微管蛋白聚合并诱导其凋亡,从而提出了一种通过破坏微管动力学治疗MDS的化疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer Biology & Therapy
Cancer Biology & Therapy 医学-肿瘤学
CiteScore
7.00
自引率
0.00%
发文量
60
审稿时长
2.3 months
期刊介绍: Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.
期刊最新文献
Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer. Correction. WYC-209 inhibited GC malignant progression by down-regulating WNT4 through RARα. Efficacy and pharmacodynamic effect of anti-CD73 and anti-PD-L1 monoclonal antibodies in combination with cytotoxic therapy: observations from mouse tumor models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1