Harnessing the Potential of Graphene Quantum Dots for Multifunctional Biomedical Applications.

IF 7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical record Pub Date : 2024-11-11 DOI:10.1002/tcr.202400185
Yujia Han, Hongyan Hao, Haixiang Zeng, Hongxia Li, Xiaohui Niu, Wei Qi, Deyi Zhang, Kunjie Wang
{"title":"Harnessing the Potential of Graphene Quantum Dots for Multifunctional Biomedical Applications.","authors":"Yujia Han, Hongyan Hao, Haixiang Zeng, Hongxia Li, Xiaohui Niu, Wei Qi, Deyi Zhang, Kunjie Wang","doi":"10.1002/tcr.202400185","DOIUrl":null,"url":null,"abstract":"<p><p>The existing and emerging demand for materials for life and health has contributed to the cultivation and development of respective markets. Nevertheless, the current generation of biomedical materials has yet to fully satisfy the clinical requirements of the market, which is still in its relative infancy. Research and development in this area must be prioritized in light of the pivotal role of new life and health materials in the biological field. Among many life and health materials, GQDs, an emerging nanomaterial, exhibit considerable promise in the biomedical field, primarily due to their exceptional properties. Furthermore, the direct preparation and functionalization of GQDs have facilitated the development of specific functional composites based on GQDs. The biological applications of GQDs are undergoing rapid growth, which makes it necessary to publish a review article presenting the latest advances in this field. This review provides an overview of the significant advances in synthesizing GQDs, the techniques employed for structural characterizations, and the properties that have been elucidated. Furthermore, it presents recent findings on applying GQDs in antimicrobial, anticancer, biosensing, drug delivery, and bioimaging applications. Finally, it explores the potential of GQDs in biomedicine and biotechnology, highlighting the current challenges that remain to be addressed.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":" ","pages":"e202400185"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/tcr.202400185","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The existing and emerging demand for materials for life and health has contributed to the cultivation and development of respective markets. Nevertheless, the current generation of biomedical materials has yet to fully satisfy the clinical requirements of the market, which is still in its relative infancy. Research and development in this area must be prioritized in light of the pivotal role of new life and health materials in the biological field. Among many life and health materials, GQDs, an emerging nanomaterial, exhibit considerable promise in the biomedical field, primarily due to their exceptional properties. Furthermore, the direct preparation and functionalization of GQDs have facilitated the development of specific functional composites based on GQDs. The biological applications of GQDs are undergoing rapid growth, which makes it necessary to publish a review article presenting the latest advances in this field. This review provides an overview of the significant advances in synthesizing GQDs, the techniques employed for structural characterizations, and the properties that have been elucidated. Furthermore, it presents recent findings on applying GQDs in antimicrobial, anticancer, biosensing, drug delivery, and bioimaging applications. Finally, it explores the potential of GQDs in biomedicine and biotechnology, highlighting the current challenges that remain to be addressed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用石墨烯量子点的潜力实现多功能生物医学应用。
对生命和健康材料的现有和新兴需求促进了相关市场的培育和发展。然而,目前的生物医学材料还不能完全满足市场的临床需求,仍处于相对初级阶段。鉴于新型生命健康材料在生物领域的关键作用,必须优先考虑这一领域的研发工作。在众多生命与健康材料中,GQDs 作为一种新兴的纳米材料,在生物医学领域大有可为,这主要得益于其优异的性能。此外,GQDs 的直接制备和功能化也促进了基于 GQDs 的特定功能复合材料的开发。GQDs 的生物应用正在迅速发展,因此有必要发表一篇综述文章,介绍该领域的最新进展。本综述概述了在合成 GQDs 方面取得的重大进展、用于结构表征的技术以及已阐明的特性。此外,它还介绍了将 GQDs 应用于抗菌、抗癌、生物传感、药物输送和生物成像应用的最新研究成果。最后,它探讨了 GQDs 在生物医学和生物技术方面的潜力,并强调了当前仍有待解决的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical record
Chemical record 化学-化学综合
CiteScore
11.00
自引率
3.00%
发文量
188
审稿时长
>12 weeks
期刊介绍: The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields. TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.
期刊最新文献
N-Heterocyclic Carbene Catalyzed Reactions Involving Acetylenic Breslow and/or Acylazolium as Key Intermediates. Recent Advances of C-S Coupling Reaction of (Hetero)Arenes by C-H Functionalization. A Comprehensive Survey of Stink Bug Pheromones - Extraction, Identification, Synthesis, Biosynthesis, and Phylogenetic Insights. Pnictogen and Chalcogen Salts as Alkylating Agents. A Review on Chemistry and Methods of Synthesis of 1,2,4-Triazole Derivatives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1