Artificial intelligence modeling of biomarker-based physiological age: Impact on phase 1 drug-metabolizing enzyme phenotypes.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY CPT: Pharmacometrics & Systems Pharmacology Pub Date : 2024-11-14 DOI:10.1002/psp4.13273
Amruta Gajanan Bhat, Murali Ramanathan
{"title":"Artificial intelligence modeling of biomarker-based physiological age: Impact on phase 1 drug-metabolizing enzyme phenotypes.","authors":"Amruta Gajanan Bhat, Murali Ramanathan","doi":"10.1002/psp4.13273","DOIUrl":null,"url":null,"abstract":"<p><p>Age and aging are important predictors of health status, disease progression, drug kinetics, and effects. The purpose was to develop ensemble learning-based physiological age (PA) models for evaluating drug metabolism. National Health and Nutrition Examination Survey (NHANES) data were modeled with ensemble learning to obtain two PA models, PA-M1 and PA-M2. PA-M1 included body composition, blood and urine biomarkers, and disease variables as predictors. PA-M2 had blood and urine-derived variables as predictors. Activity phenotypes for cytochrome-P450 (CYP) CYP2E1, CYP1A2, CYP2A6, xanthine oxidase (XO), and N-acetyltransferase-2 (NAT-2) and telomere attrition were assessed. Bayesian networks were used to obtain mechanistic systems pharmacology model structures for PA. The study included n = 22,307 NHANES participants (51.5% female, mean age 46.0 years, range: 18-79 years). The PA-M1 and PA-M2 distributions had greater dispersion across age strata with a right skew for younger age strata and a left skew for older age strata. There was no evidence of algorithmic bias based on sex or race/ethnicity. Klotho, lean body mass, glycohemoglobin, and systolic blood pressure were the top four predictors for PA-M1. Glycohemoglobin, serum creatinine, total cholesterol, and urine creatinine were the top four predictors for PA-M2. The models also performed satisfactorily in independent validation. Model-predicted PA was associated with CYP2E1, CYP1A2, CYP2A6, XO, and NAT-2 activity. Telomere attrition was associated with greater PA-M1 and PA-M2. Ensemble learning models provide robust assessments of PA from easily obtained blood and urine biomarkers. PA is associated with Phase I drug-metabolizing enzyme phenotypes.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/psp4.13273","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Age and aging are important predictors of health status, disease progression, drug kinetics, and effects. The purpose was to develop ensemble learning-based physiological age (PA) models for evaluating drug metabolism. National Health and Nutrition Examination Survey (NHANES) data were modeled with ensemble learning to obtain two PA models, PA-M1 and PA-M2. PA-M1 included body composition, blood and urine biomarkers, and disease variables as predictors. PA-M2 had blood and urine-derived variables as predictors. Activity phenotypes for cytochrome-P450 (CYP) CYP2E1, CYP1A2, CYP2A6, xanthine oxidase (XO), and N-acetyltransferase-2 (NAT-2) and telomere attrition were assessed. Bayesian networks were used to obtain mechanistic systems pharmacology model structures for PA. The study included n = 22,307 NHANES participants (51.5% female, mean age 46.0 years, range: 18-79 years). The PA-M1 and PA-M2 distributions had greater dispersion across age strata with a right skew for younger age strata and a left skew for older age strata. There was no evidence of algorithmic bias based on sex or race/ethnicity. Klotho, lean body mass, glycohemoglobin, and systolic blood pressure were the top four predictors for PA-M1. Glycohemoglobin, serum creatinine, total cholesterol, and urine creatinine were the top four predictors for PA-M2. The models also performed satisfactorily in independent validation. Model-predicted PA was associated with CYP2E1, CYP1A2, CYP2A6, XO, and NAT-2 activity. Telomere attrition was associated with greater PA-M1 and PA-M2. Ensemble learning models provide robust assessments of PA from easily obtained blood and urine biomarkers. PA is associated with Phase I drug-metabolizing enzyme phenotypes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于生物标志物的生理年龄人工智能建模:对第一阶段药物代谢酶表型的影响。
年龄和衰老是健康状况、疾病进展、药物动力学和效果的重要预测因素。我们的目的是开发基于集合学习的生理年龄(PA)模型,用于评估药物代谢。利用集合学习对美国国家健康与营养调查(NHANES)数据进行建模,得到了两个生理年龄模型:PA-M1 和 PA-M2。PA-M1 包括身体成分、血液和尿液生物标志物以及疾病变量作为预测因子。PA-M2 以血液和尿液变量作为预测因子。评估了细胞色素-P450(CYP)CYP2E1、CYP1A2、CYP2A6、黄嘌呤氧化酶(XO)和 N-乙酰转移酶-2(NAT-2)的活性表型以及端粒损耗。贝叶斯网络用于获得 PA 的机理系统药理学模型结构。该研究包括 n = 22,307 名 NHANES 参与者(51.5% 为女性,平均年龄 46.0 岁,年龄范围:18-79 岁)。PA-M1和PA-M2的分布在不同年龄层有更大的分散性,年轻年龄层呈右偏斜,年长年龄层呈左偏斜。没有证据表明存在基于性别或种族/人种的算法偏差。Klotho、瘦体重、糖化血红蛋白和收缩压是预测 PA-M1 的前四项指标。糖化血红蛋白、血清肌酐、总胆固醇和尿肌酐是预测 PA-M2 的前四项指标。这些模型在独立验证中的表现也令人满意。模型预测的 PA 与 CYP2E1、CYP1A2、CYP2A6、XO 和 NAT-2 活性有关。端粒损耗与 PA-M1 和 PA-M2 的增加有关。集合学习模型可以通过容易获得的血液和尿液生物标记物对 PA 进行稳健的评估。PA与I期药物代谢酶表型有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
期刊最新文献
Clinical study design strategies to mitigate confounding effects of time-dependent clearance on dose optimization of therapeutic antibodies. Exploration of the potential impact of batch-to-batch variability on the establishment of pharmacokinetic bioequivalence for inhalation powder drug products. Population pharmacokinetics of selexipag for dose selection and confirmation in pediatric patients with pulmonary arterial hypertension. Issue Information Exposure-response modeling of liver fat imaging endpoints in non-alcoholic fatty liver disease populations administered ervogastat alone and co-administered with clesacostat.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1