首页 > 最新文献

CPT: Pharmacometrics & Systems Pharmacology最新文献

英文 中文
A model-informed clinical trial simulation tool with a graphical user interface for Duchenne muscular dystrophy. 具有图形用户界面的杜氏肌肉萎缩症模型临床试验模拟工具。
IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-03 DOI: 10.1002/psp4.13246
Jongjin Kim, Juan Francisco Morales, Sanghoon Kang, Marian Klose, Rebecca J Willcocks, Michael J Daniels, Ramona Belfiore-Oshan, Glenn A Walter, William D Rooney, Krista Vandenborne, Sarah Kim

Quantitative model-based clinical trial simulation tools play a critical role in informing study designs through simulation before actual execution. These tools help drug developers explore various trial scenarios in silico to select a clinical trial design to detect therapeutic effects more efficiently, therefore reducing time, expense, and participants' burden. To increase the usability of the tools, user-friendly and interactive platforms should be developed to navigate various simulation scenarios. However, developing such tools challenges researchers, requiring expertise in modeling and interface development. This tutorial aims to address this gap by guiding developers in creating tailored R Shiny apps, using an example of a model-based clinical trial simulation tool that we developed for Duchenne muscular dystrophy (DMD). In this tutorial, the structural framework, essential controllers, and visualization techniques for analysis are described, along with key code examples such as criteria selection and power calculation. A virtual population was created using a machine learning algorithm to enlarge the available sample size to simulate clinical trial scenarios in the presented tool. In addition, external validation of the simulated outputs was conducted using a placebo arm of a recently published DMD trial. This tutorial will be particularly useful for developing clinical trial simulation tools based on DMD progression models for other end points and biomarkers. The presented strategies can also be applied to other diseases.

基于定量模型的临床试验模拟工具在实际执行前通过模拟为研究设计提供信息方面发挥着至关重要的作用。这些工具可以帮助药物开发人员在硅学中探索各种试验方案,从而选择临床试验设计,更有效地检测治疗效果,从而减少时间、费用和参与者的负担。为提高工具的可用性,应开发用户友好的交互式平台,以浏览各种模拟场景。然而,开发此类工具对研究人员提出了挑战,需要建模和界面开发方面的专业知识。本教程以我们为杜氏肌营养不良症(DMD)开发的基于模型的临床试验模拟工具为例,旨在指导开发人员创建量身定制的 R Shiny 应用程序,从而弥补这一不足。本教程介绍了结构框架、基本控制器和可视化分析技术,以及标准选择和功率计算等关键代码示例。使用机器学习算法创建了一个虚拟人群,以扩大可用样本量,从而在介绍的工具中模拟临床试验场景。此外,还使用最近发表的一项 DMD 试验的安慰剂臂对模拟输出进行了外部验证。本教程对于开发基于 DMD 进展模型、适用于其他终点和生物标记物的临床试验模拟工具特别有用。所介绍的策略也可应用于其他疾病。
{"title":"A model-informed clinical trial simulation tool with a graphical user interface for Duchenne muscular dystrophy.","authors":"Jongjin Kim, Juan Francisco Morales, Sanghoon Kang, Marian Klose, Rebecca J Willcocks, Michael J Daniels, Ramona Belfiore-Oshan, Glenn A Walter, William D Rooney, Krista Vandenborne, Sarah Kim","doi":"10.1002/psp4.13246","DOIUrl":"https://doi.org/10.1002/psp4.13246","url":null,"abstract":"<p><p>Quantitative model-based clinical trial simulation tools play a critical role in informing study designs through simulation before actual execution. These tools help drug developers explore various trial scenarios in silico to select a clinical trial design to detect therapeutic effects more efficiently, therefore reducing time, expense, and participants' burden. To increase the usability of the tools, user-friendly and interactive platforms should be developed to navigate various simulation scenarios. However, developing such tools challenges researchers, requiring expertise in modeling and interface development. This tutorial aims to address this gap by guiding developers in creating tailored R Shiny apps, using an example of a model-based clinical trial simulation tool that we developed for Duchenne muscular dystrophy (DMD). In this tutorial, the structural framework, essential controllers, and visualization techniques for analysis are described, along with key code examples such as criteria selection and power calculation. A virtual population was created using a machine learning algorithm to enlarge the available sample size to simulate clinical trial scenarios in the presented tool. In addition, external validation of the simulated outputs was conducted using a placebo arm of a recently published DMD trial. This tutorial will be particularly useful for developing clinical trial simulation tools based on DMD progression models for other end points and biomarkers. The presented strategies can also be applied to other diseases.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiology-based pharmacokinetic model with relative transcriptomics to evaluate tissue distribution and receptor occupancy of anifrolumab. 基于生理学的药代动力学模型与相对转录组学相结合,评估阿尼洛单抗的组织分布和受体占有率。
IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-03 DOI: 10.1002/psp4.13245
Pradeep Sharma, David W Boulton, Lynn N Bertagnolli, Weifeng Tang

Type I interferons contribute to the pathogenesis of several autoimmune disorders, including systemic lupus erythematosus (SLE), systemic sclerosis, cutaneous lupus erythematosus, and myositis. Anifrolumab is a monoclonal antibody that binds to subunit 1 of the type I interferon receptor (IFNAR1). Results of phase IIb and phase III trials led to the approval of intravenous anifrolumab 300 mg every 4 weeks (Q4W) alongside standard therapy in patients with moderate-to-severe SLE. Here, we built a population physiology-based pharmacokinetic (PBPK) model of anifrolumab by utilizing the physiochemical properties of anifrolumab, binding kinetics to the Fc gamma neonatal receptor, and target-mediated drug disposition properties. A novel relative transcriptomics approach was employed to determine IFNAR1 expression in tissues (blood, skin, gastrointestinal tract, lungs, and muscle) using mRNA abundances from bioinformatic databases. The IFNAR1 expression and PBPK model were validated by testing their ability to predict clinical pharmacokinetics over a large dose range from different clinical scenarios after subcutaneous and intravenous anifrolumab dosing. The validated PBPK model predicted high unbound local concentrations of anifrolumab in blood, skin, gastrointestinal tract, lungs, and muscle, which exceeded its IFNAR1 dissociation equilibrium constant values. The model also predicted high IFNAR1 occupancy with subcutaneous and intravenous anifrolumab dosing. The model predicted more sustained IFNAR1 occupancy ≥90% with subcutaneous anifrolumab 120 mg once-weekly dosing vs. intravenous 300 mg Q4W dosing. The results informed the dosing of phase III studies of anifrolumab in new indications and present a novel approach to PBPK modeling coupled with relative transcriptomics in simulating pharmacokinetics of therapeutic monoclonal antibodies.

I型干扰素是多种自身免疫性疾病的发病机制之一,包括系统性红斑狼疮(SLE)、系统性硬化症、皮肤红斑狼疮和肌炎。Anifrolumab 是一种与 I 型干扰素受体(IFNAR1)1 亚单位结合的单克隆抗体。IIb期和III期试验的结果促使阿尼洛单抗获批用于中重度系统性红斑狼疮患者的标准疗法,每4周静脉注射300毫克阿尼洛单抗(Q4W)。在这里,我们利用阿尼洛单抗的生化特性、与 Fc γ 新生受体的结合动力学以及靶向药物处置特性,建立了一个基于群体生理学的阿尼洛单抗药代动力学(PBPK)模型。利用生物信息学数据库中的 mRNA 丰度,采用新颖的相对转录组学方法确定 IFNAR1 在组织(血液、皮肤、胃肠道、肺和肌肉)中的表达。通过测试 IFNAR1 表达和 PBPK 模型预测皮下注射和静脉注射阿尼罗单抗后不同临床情况下大剂量范围内临床药代动力学的能力,对其进行了验证。经过验证的 PBPK 模型预测,血液、皮肤、胃肠道、肺部和肌肉中的阿尼洛单抗未结合局部浓度较高,超过了其 IFNAR1 解离平衡常数值。该模型还预测,皮下注射和静脉注射阿尼洛单抗会产生较高的 IFNAR1 占位率。与静脉注射 300 毫克 Q4W 相比,该模型预测皮下注射阿尼单抗 120 毫克每周一次与静脉注射 300 毫克 Q4W 的 IFNAR1 占用率更持久,≥90%。这些结果为安非罗单抗在新适应症中的III期研究剂量提供了依据,并为PBPK建模结合相对转录组学模拟治疗性单克隆抗体的药代动力学提供了一种新方法。
{"title":"Physiology-based pharmacokinetic model with relative transcriptomics to evaluate tissue distribution and receptor occupancy of anifrolumab.","authors":"Pradeep Sharma, David W Boulton, Lynn N Bertagnolli, Weifeng Tang","doi":"10.1002/psp4.13245","DOIUrl":"https://doi.org/10.1002/psp4.13245","url":null,"abstract":"<p><p>Type I interferons contribute to the pathogenesis of several autoimmune disorders, including systemic lupus erythematosus (SLE), systemic sclerosis, cutaneous lupus erythematosus, and myositis. Anifrolumab is a monoclonal antibody that binds to subunit 1 of the type I interferon receptor (IFNAR1). Results of phase IIb and phase III trials led to the approval of intravenous anifrolumab 300 mg every 4 weeks (Q4W) alongside standard therapy in patients with moderate-to-severe SLE. Here, we built a population physiology-based pharmacokinetic (PBPK) model of anifrolumab by utilizing the physiochemical properties of anifrolumab, binding kinetics to the Fc gamma neonatal receptor, and target-mediated drug disposition properties. A novel relative transcriptomics approach was employed to determine IFNAR1 expression in tissues (blood, skin, gastrointestinal tract, lungs, and muscle) using mRNA abundances from bioinformatic databases. The IFNAR1 expression and PBPK model were validated by testing their ability to predict clinical pharmacokinetics over a large dose range from different clinical scenarios after subcutaneous and intravenous anifrolumab dosing. The validated PBPK model predicted high unbound local concentrations of anifrolumab in blood, skin, gastrointestinal tract, lungs, and muscle, which exceeded its IFNAR1 dissociation equilibrium constant values. The model also predicted high IFNAR1 occupancy with subcutaneous and intravenous anifrolumab dosing. The model predicted more sustained IFNAR1 occupancy ≥90% with subcutaneous anifrolumab 120 mg once-weekly dosing vs. intravenous 300 mg Q4W dosing. The results informed the dosing of phase III studies of anifrolumab in new indications and present a novel approach to PBPK modeling coupled with relative transcriptomics in simulating pharmacokinetics of therapeutic monoclonal antibodies.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interim analysis, a tool to enhance efficiency of pharmacokinetic studies: Pharmacokinetics of rifampicin in lactating mother-infant pairs. 中期分析,提高药代动力学研究效率的工具:哺乳期母婴对利福平的药代动力学。
IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-02 DOI: 10.1002/psp4.13247
Aida N Kawuma, Francis Williams Ojara, Allan Buzibye, Barbara Castelnuovo, Jovia C Tabwenda, Jacqueline Kyeyune, Christine Turyahabwe, Simon Peter Asiimwe, Johnson Magoola, Lubbe Wiesner, Ritah Nakijoba, Catriona Waitt

Pharmacokinetic studies are important for understanding drug disposition in the human body. However, pregnant and lactating women are often excluded from primary pharmacokinetic studies and as such there is often limited dosing information regarding drug use in pregnant and/or lactating women. The objectives of this interim analysis were to define the transfer of rifampicin to a breastfed infant and to determine the area under the concentration-time curve of rifampicin in maternal plasma, breastmilk and infant plasma. Performing this interim analysis enabled us to substantiate whether prior assumptions we made on several study design issues including patient sample size and pharmacokinetic sampling times held and whether we needed to amend our protocol or not. We enrolled lactating mothers on treatment for tuberculosis with their breastfeeding infants (below 12 months of age), performed intensive pharmacokinetic sampling (0-24 h post-dose) on plasma samples from both the mother, infant(s) and breastmilk samples from the mother on two separate occasions (once during the initiation phase and another during the continuation phase of tuberculosis treatment). The initial study design, including sampling times, was informed by a stochastic simulation and estimation exercise, with very limited prior breastmilk data. An interim analysis after recruiting 6 mother-infant pairs ascertained that our initial assumptions were ideal for achieving our study objectives and no amendments to the sampling times were necessary. Initial data from 6 mother-infant pairs show that rifampicin penetrates breastmilk with an approximate milk-to-plasma ratio of 0.169 and 0.189 on two separate visits. However, it was undetectable in most infants.

药代动力学研究对于了解药物在人体内的处置非常重要。然而,孕妇和哺乳期妇女往往被排除在初级药代动力学研究之外,因此有关孕妇和/或哺乳期妇女用药的剂量信息往往十分有限。本次中期分析的目的是确定利福平向母乳喂养婴儿的转移,并确定利福平在母体血浆、母乳和婴儿血浆中的浓度-时间曲线下面积。进行这项中期分析使我们能够证实我们之前在病人样本量和药代动力学取样时间等研究设计问题上所做的假设是否成立,以及我们是否需要修改我们的方案。我们招募了正在接受结核病治疗的哺乳期母亲及其哺乳期婴儿(12 个月以下),对母亲、婴儿的血浆样本和母亲的母乳样本分别进行了两次强化药代动力学采样(剂量后 0-24 小时)(一次在结核病治疗的起始阶段,另一次在结核病治疗的持续阶段)。最初的研究设计(包括采样时间)是根据随机模拟和估算得出的,而之前的母乳数据非常有限。在招募了 6 对母婴后进行的中期分析确定,我们最初的假设非常适合实现我们的研究目标,因此无需修改采样时间。来自 6 对母婴的初步数据显示,利福平在母乳中的渗透率约为 0.169 和 0.189。不过,大多数婴儿体内检测不到利福平。
{"title":"Interim analysis, a tool to enhance efficiency of pharmacokinetic studies: Pharmacokinetics of rifampicin in lactating mother-infant pairs.","authors":"Aida N Kawuma, Francis Williams Ojara, Allan Buzibye, Barbara Castelnuovo, Jovia C Tabwenda, Jacqueline Kyeyune, Christine Turyahabwe, Simon Peter Asiimwe, Johnson Magoola, Lubbe Wiesner, Ritah Nakijoba, Catriona Waitt","doi":"10.1002/psp4.13247","DOIUrl":"10.1002/psp4.13247","url":null,"abstract":"<p><p>Pharmacokinetic studies are important for understanding drug disposition in the human body. However, pregnant and lactating women are often excluded from primary pharmacokinetic studies and as such there is often limited dosing information regarding drug use in pregnant and/or lactating women. The objectives of this interim analysis were to define the transfer of rifampicin to a breastfed infant and to determine the area under the concentration-time curve of rifampicin in maternal plasma, breastmilk and infant plasma. Performing this interim analysis enabled us to substantiate whether prior assumptions we made on several study design issues including patient sample size and pharmacokinetic sampling times held and whether we needed to amend our protocol or not. We enrolled lactating mothers on treatment for tuberculosis with their breastfeeding infants (below 12 months of age), performed intensive pharmacokinetic sampling (0-24 h post-dose) on plasma samples from both the mother, infant(s) and breastmilk samples from the mother on two separate occasions (once during the initiation phase and another during the continuation phase of tuberculosis treatment). The initial study design, including sampling times, was informed by a stochastic simulation and estimation exercise, with very limited prior breastmilk data. An interim analysis after recruiting 6 mother-infant pairs ascertained that our initial assumptions were ideal for achieving our study objectives and no amendments to the sampling times were necessary. Initial data from 6 mother-infant pairs show that rifampicin penetrates breastmilk with an approximate milk-to-plasma ratio of 0.169 and 0.189 on two separate visits. However, it was undetectable in most infants.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PBPK modeling: What is the role of CYP3A4 expression in the gastrointestinal tract to accurately predict first-pass metabolism? PBPK 模型:胃肠道中 CYP3A4 的表达对准确预测首过代谢有何作用?
IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-02 DOI: 10.1002/psp4.13249
Justine Henriot, André Dallmann, François Dupuis, Jérémy Perrier, Sebastian Frechen

Gastrointestinal first-pass metabolism plays an important role in bioavailability and in drug-drug interactions. Physiologically-based pharmacokinetic (PBPK) modeling is a powerful tool to integrate these processes mechanistically. However, a correct bottom-up prediction of GI first-pass metabolism is challenging and depends on various model parameters like the level of enzyme expression and the basolateral intestinal mucosa permeability (Pmucosa). This work aimed to investigate if cytochrome P450 (CYP) 3A4 expression could help predict the first-pass effect using PBPK modeling or whether additional factors like Pmucosa do play additional roles using PBPK modeling. To this end, a systematic review of the absolute CYP3A expression in the human gastrointestinal tract and liver was conducted. The resulting CYP3A4 expression profile and two previously published profiles were applied to PBPK models of seven CYP3A4 substrates (alfentanil, alprazolam, felodipine, midazolam, sildenafil, triazolam, and verapamil) built-in PK-Sim®. For each compound, it was assessed whether first-pass metabolism could be adequately predicted based on the integrated CYP3A4 expression profile alone or whether an optimization of Pmucosa was required. Evaluation criteria were the precision of the predicted interstudy bioavailabilities and area under the concentration-time curves. It was found that none of the expression profiles provided upfront an adequate description of the extent of GI metabolism and that optimization of Pmucosa as a compound-specific parameter improved the prediction of most models. Our findings indicate that a pure bottom-up prediction of gastrointestinal first-pass metabolism is currently not possible and that compound-specific features like Pmucosa must be considered as well.

胃肠道首过代谢在生物利用度和药物相互作用中发挥着重要作用。基于生理学的药代动力学(PBPK)模型是从机理上整合这些过程的有力工具。然而,对消化道一过代谢进行正确的自下而上的预测具有挑战性,并且取决于各种模型参数,如酶的表达水平和肠粘膜基底层的通透性(Pmucosa)。本研究旨在探讨细胞色素 P450 (CYP) 3A4 的表达是否有助于使用 PBPK 模型预测首过效应,或者 Pmucosa 等其他因素是否会在 PBPK 模型中发挥额外的作用。为此,我们对人体胃肠道和肝脏中 CYP3A 的绝对表达量进行了系统回顾。将得出的 CYP3A4 表达谱和之前发表的两个表达谱应用于内置 PK-Sim® 的七种 CYP3A4 底物(阿芬太尼、阿普唑仑、非洛地平、咪达唑仑、西地那非、三唑仑和维拉帕米)的 PBPK 模型。对于每种化合物,都要评估是否可以仅根据综合 CYP3A4 表达谱充分预测首过代谢,或者是否需要对 Pmucosa 进行优化。评估标准是预测的研究间生物利用度和浓度-时间曲线下面积的精确度。结果发现,没有一种表达谱能充分说明胃肠道代谢的程度,而将 Pmucosa 作为化合物的特异性参数进行优化后,大多数模型的预测结果都有所改善。我们的研究结果表明,目前还不可能对胃肠道首过代谢进行纯粹的自下而上的预测,还必须考虑 Pmucosa 等化合物的特异性特征。
{"title":"PBPK modeling: What is the role of CYP3A4 expression in the gastrointestinal tract to accurately predict first-pass metabolism?","authors":"Justine Henriot, André Dallmann, François Dupuis, Jérémy Perrier, Sebastian Frechen","doi":"10.1002/psp4.13249","DOIUrl":"https://doi.org/10.1002/psp4.13249","url":null,"abstract":"<p><p>Gastrointestinal first-pass metabolism plays an important role in bioavailability and in drug-drug interactions. Physiologically-based pharmacokinetic (PBPK) modeling is a powerful tool to integrate these processes mechanistically. However, a correct bottom-up prediction of GI first-pass metabolism is challenging and depends on various model parameters like the level of enzyme expression and the basolateral intestinal mucosa permeability (P<sub>mucosa</sub>). This work aimed to investigate if cytochrome P450 (CYP) 3A4 expression could help predict the first-pass effect using PBPK modeling or whether additional factors like P<sub>mucosa</sub> do play additional roles using PBPK modeling. To this end, a systematic review of the absolute CYP3A expression in the human gastrointestinal tract and liver was conducted. The resulting CYP3A4 expression profile and two previously published profiles were applied to PBPK models of seven CYP3A4 substrates (alfentanil, alprazolam, felodipine, midazolam, sildenafil, triazolam, and verapamil) built-in PK-Sim®. For each compound, it was assessed whether first-pass metabolism could be adequately predicted based on the integrated CYP3A4 expression profile alone or whether an optimization of P<sub>mucosa</sub> was required. Evaluation criteria were the precision of the predicted interstudy bioavailabilities and area under the concentration-time curves. It was found that none of the expression profiles provided upfront an adequate description of the extent of GI metabolism and that optimization of P<sub>mucosa</sub> as a compound-specific parameter improved the prediction of most models. Our findings indicate that a pure bottom-up prediction of gastrointestinal first-pass metabolism is currently not possible and that compound-specific features like P<sub>mucosa</sub> must be considered as well.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunostimulatory/Immunodynamic model of mRNA-1273 to guide pediatric vaccine dose selection. mRNA-1273 的免疫刺激/免疫动力学模型用于指导儿科疫苗剂量选择。
IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-26 DOI: 10.1002/psp4.13237
Vijay Ivaturi, Husain Attarwala, Weiping Deng, Baoyu Ding, Sabine Schnyder Ghamloush, Bethany Girard, Javid Iqbal, Saugandhika Minnikanti, Honghong Zhou, Jacqueline Miller, Rituparna Das

COVID-19 vaccines, including mRNA-1273, have been rapidly developed and deployed. Establishing the optimal dose is crucial for developing a safe and effective vaccine. Modeling and simulation have the potential to play a key role in guiding the selection and development of the vaccine dose. In this context, we have developed an immunostimulatory/immunodynamic (IS/ID) model to quantitatively characterize the neutralizing antibody titers elicited by mRNA-1273 obtained from three clinical studies. The developed model was used to predict the optimal vaccine dose for future pediatric trials. A 25-μg primary vaccine series was predicted to meet non-inferiority criteria in young children (aged 2-5 years) and infants (aged 6-23 months). The geometric mean titers and geometric mean ratios for this dose level predicted using the IS/ID model a priori matched those observed in the pediatric clinical study. These findings demonstrate that IS/ID models represent a novel approach to guide data-driven clinical dose selection of vaccines.

包括 mRNA-1273 在内的 COVID-19 疫苗已被迅速开发和应用。确定最佳剂量对于开发安全有效的疫苗至关重要。建模和模拟有可能在指导疫苗剂量的选择和开发方面发挥关键作用。在此背景下,我们开发了一个免疫刺激/免疫动力学(IS/ID)模型,用于定量描述从三项临床研究中获得的 mRNA-1273 引起的中和抗体滴度。所开发的模型用于预测未来儿科试验的最佳疫苗剂量。据预测,在幼儿(2-5 岁)和婴儿(6-23 个月)中,25μg 的初级疫苗系列符合非劣效性标准。使用 IS/ID 模型预测的这一剂量水平的几何平均滴度和几何平均比率与儿科临床研究中观察到的结果相吻合。这些研究结果表明,IS/ID 模型是指导以数据为导向的疫苗临床剂量选择的一种新方法。
{"title":"Immunostimulatory/Immunodynamic model of mRNA-1273 to guide pediatric vaccine dose selection.","authors":"Vijay Ivaturi, Husain Attarwala, Weiping Deng, Baoyu Ding, Sabine Schnyder Ghamloush, Bethany Girard, Javid Iqbal, Saugandhika Minnikanti, Honghong Zhou, Jacqueline Miller, Rituparna Das","doi":"10.1002/psp4.13237","DOIUrl":"https://doi.org/10.1002/psp4.13237","url":null,"abstract":"<p><p>COVID-19 vaccines, including mRNA-1273, have been rapidly developed and deployed. Establishing the optimal dose is crucial for developing a safe and effective vaccine. Modeling and simulation have the potential to play a key role in guiding the selection and development of the vaccine dose. In this context, we have developed an immunostimulatory/immunodynamic (IS/ID) model to quantitatively characterize the neutralizing antibody titers elicited by mRNA-1273 obtained from three clinical studies. The developed model was used to predict the optimal vaccine dose for future pediatric trials. A 25-μg primary vaccine series was predicted to meet non-inferiority criteria in young children (aged 2-5 years) and infants (aged 6-23 months). The geometric mean titers and geometric mean ratios for this dose level predicted using the IS/ID model a priori matched those observed in the pediatric clinical study. These findings demonstrate that IS/ID models represent a novel approach to guide data-driven clinical dose selection of vaccines.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The population pharmacokinetics of dolutegravir co-administered with rifampicin in Thai people living with HIV: Assessment of alternative dosing regimens. 泰国艾滋病病毒感染者服用多罗替拉韦与利福平时的群体药代动力学:评估替代给药方案。
IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-23 DOI: 10.1002/psp4.13244
Baralee Punyawudho, Anan Chanruang, Thornthun Ueaphongsukkit, Sivaporn Gatechompol, Sasiwimol Ubolyam, Yong Soon Cho, Jae Gook Shin, Anchalee Avihingsanon

Tuberculosis is the most common opportunistic infection in individuals with HIV, and rifampicin is crucial in the treatment of tuberculosis. Drug-drug interactions complicate the use of DTG in HIV/TB co-infection, which makes drug administration more difficult. This study aimed to develop the population pharmacokinetic model of DTG when co-administered with rifampicin. The developed model was further used to investigate different dosing regimens. Forty HIV/TB-co-infected participants receiving DTG 50 mg once daily (OD) with food or DTG 50 mg twice daily (b.i.d.) without food were included in the analysis. Intensive pharmacokinetic samples were collected. The data were analyzed using a nonlinear mixed-effects modeling approach. A total of 332 DTG concentrations from 40 PLWH were analyzed. The pharmacokinetics of DTG co-administered with rifampicin can be best described by a one-compartment model with first-order absorption (incorporating lag time) and elimination. Total bilirubin was the only covariate that significantly affected CL/F. DTG 50 mg b.i.d. results in the highest proportion of individuals achieving in vitro IC90 of 0.064 mg/L and in vivo EC90 of 0.3 mg/L, while more than 90% of individuals receiving DTG 100 mg OD would achieve the in vitro IC90 target. Therefore, DTG 100 mg OD could serve as an alternative regimen by minimizing the difficulty of drug administration. However, its clinical efficacy requires additional evaluation.

结核病是艾滋病病毒感染者最常见的机会性感染,而利福平是治疗结核病的关键药物。药物间的相互作用使 DTG 在 HIV/TB 联合感染中的使用变得复杂,增加了给药的难度。本研究旨在建立 DTG 与利福平联合用药时的群体药代动力学模型。建立的模型被进一步用于研究不同的给药方案。分析对象包括 40 名艾滋病毒/结核病合并感染者,他们服用 DTG 50 毫克,每日一次(OD),含食物;或服用 DTG 50 毫克,每日两次(b.i.d.),不含食物。收集了大量药代动力学样本。数据采用非线性混合效应模型方法进行分析。共分析了 40 名 PLWH 的 332 个 DTG 浓度。DTG与利福平合用的药代动力学可以用一室模型进行最佳描述,即一阶吸收(包含滞后时间)和消除。总胆红素是唯一对 CL/F 有显著影响的协变量。DTG 50 mg b.i.d.可使最高比例的个体达到 0.064 mg/L 的体外 IC90 和 0.3 mg/L 的体内 EC90,而 90% 以上接受 DTG 100 mg OD 的个体可达到体外 IC90 目标。因此,DTG 100 毫克口服溶液可作为一种替代方案,最大程度地降低给药难度。不过,其临床疗效还需进一步评估。
{"title":"The population pharmacokinetics of dolutegravir co-administered with rifampicin in Thai people living with HIV: Assessment of alternative dosing regimens.","authors":"Baralee Punyawudho, Anan Chanruang, Thornthun Ueaphongsukkit, Sivaporn Gatechompol, Sasiwimol Ubolyam, Yong Soon Cho, Jae Gook Shin, Anchalee Avihingsanon","doi":"10.1002/psp4.13244","DOIUrl":"https://doi.org/10.1002/psp4.13244","url":null,"abstract":"<p><p>Tuberculosis is the most common opportunistic infection in individuals with HIV, and rifampicin is crucial in the treatment of tuberculosis. Drug-drug interactions complicate the use of DTG in HIV/TB co-infection, which makes drug administration more difficult. This study aimed to develop the population pharmacokinetic model of DTG when co-administered with rifampicin. The developed model was further used to investigate different dosing regimens. Forty HIV/TB-co-infected participants receiving DTG 50 mg once daily (OD) with food or DTG 50 mg twice daily (b.i.d.) without food were included in the analysis. Intensive pharmacokinetic samples were collected. The data were analyzed using a nonlinear mixed-effects modeling approach. A total of 332 DTG concentrations from 40 PLWH were analyzed. The pharmacokinetics of DTG co-administered with rifampicin can be best described by a one-compartment model with first-order absorption (incorporating lag time) and elimination. Total bilirubin was the only covariate that significantly affected CL/F. DTG 50 mg b.i.d. results in the highest proportion of individuals achieving in vitro IC<sub>90</sub> of 0.064 mg/L and in vivo EC<sub>90</sub> of 0.3 mg/L, while more than 90% of individuals receiving DTG 100 mg OD would achieve the in vitro IC<sub>90</sub> target. Therefore, DTG 100 mg OD could serve as an alternative regimen by minimizing the difficulty of drug administration. However, its clinical efficacy requires additional evaluation.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In-host modeling of dengue virus and non-structural protein 1 and the effects of ivermectin in patients with acute dengue fever. 急性登革热患者体内登革病毒和非结构蛋白 1 的模型以及伊维菌素的作用。
IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-23 DOI: 10.1002/psp4.13233
Junjie Ding, Dumrong Mairiang, Dararat Prayongkul, Chunya Puttikhunt, Sansanee Noisakran, Nattapong Kaewjiw, Adisak Songjaeng, Tanapan Prommool, Nattaya Tangthawornchaikul, Nasikarn Angkasekwinai, Yupin Suputtamongkol, Keswadee Lapphra, Kulkanya Chokephaibulkit, Nicholas J White, Panisadee Avirutnan, Joel Tarning

The increased incidence of dengue poses a substantially global public health challenge. There are no approved antiviral drugs to treat dengue infections. Ivermectin, an old anti-parasitic drug, had no effect on dengue viremia, but reduced the dengue non-structural protein 1 (NS1) in a clinical trial. This is potentially important, as NS1 may play a causal role in the pathogenesis of severe dengue. This study established an in-host model to characterize the plasma kinetics of dengue virus and NS1 with host immunity and evaluated the effects of ivermectin, using a population pharmacokinetic-pharmacodynamic (PK-PD) modeling approach, based on two studies in acute dengue fever: a placebo-controlled ivermectin study in 250 adult patients and an ivermectin PK-PD study in 24 pediatric patients. The proposed model described adequately the observed ivermectin pharmacokinetics, viral load, and NS1 data. Bodyweight was a significant covariate on ivermectin pharmacokinetics. We found that ivermectin reduced NS1 with an EC50 of 67.5 μg/mL. In silico simulations suggested that ivermectin should be dosed within 48 h after fever onset, and that a daily dosage of 800 μg/kg could achieve substantial NS1 reduction. The in-host dengue model is useful to assess the drug effect in antiviral drug development for dengue fever.

登革热发病率的上升对全球公共卫生构成了重大挑战。目前还没有获得批准的治疗登革热感染的抗病毒药物。伊维菌素是一种古老的抗寄生虫药物,在一项临床试验中,它对登革热病毒血症没有影响,但能减少登革热非结构蛋白 1(NS1)。这一点可能很重要,因为 NS1 可能在严重登革热的发病机制中起着致病作用。这项研究建立了一个宿主内模型,以描述登革病毒和NS1在宿主免疫作用下的血浆动力学特征,并使用群体药代动力学-药效学(PK-PD)建模方法评估了伊维菌素的作用,该模型基于两项急性登革热研究:一项是在250名成年患者中进行的安慰剂对照伊维菌素研究,另一项是在24名儿童患者中进行的伊维菌素PK-PD研究。提出的模型充分描述了观察到的伊维菌素药代动力学、病毒载量和 NS1 数据。体重是影响伊维菌素药代动力学的一个重要协变量。我们发现,伊维菌素可降低 NS1 的 EC50 值为 67.5 μg/mL。硅学模拟表明,伊维菌素应在发烧后48小时内使用,每天800 μg/kg的剂量可大幅降低NS1。宿主内登革热模型有助于评估登革热抗病毒药物开发中的药物效果。
{"title":"In-host modeling of dengue virus and non-structural protein 1 and the effects of ivermectin in patients with acute dengue fever.","authors":"Junjie Ding, Dumrong Mairiang, Dararat Prayongkul, Chunya Puttikhunt, Sansanee Noisakran, Nattapong Kaewjiw, Adisak Songjaeng, Tanapan Prommool, Nattaya Tangthawornchaikul, Nasikarn Angkasekwinai, Yupin Suputtamongkol, Keswadee Lapphra, Kulkanya Chokephaibulkit, Nicholas J White, Panisadee Avirutnan, Joel Tarning","doi":"10.1002/psp4.13233","DOIUrl":"https://doi.org/10.1002/psp4.13233","url":null,"abstract":"<p><p>The increased incidence of dengue poses a substantially global public health challenge. There are no approved antiviral drugs to treat dengue infections. Ivermectin, an old anti-parasitic drug, had no effect on dengue viremia, but reduced the dengue non-structural protein 1 (NS1) in a clinical trial. This is potentially important, as NS1 may play a causal role in the pathogenesis of severe dengue. This study established an in-host model to characterize the plasma kinetics of dengue virus and NS1 with host immunity and evaluated the effects of ivermectin, using a population pharmacokinetic-pharmacodynamic (PK-PD) modeling approach, based on two studies in acute dengue fever: a placebo-controlled ivermectin study in 250 adult patients and an ivermectin PK-PD study in 24 pediatric patients. The proposed model described adequately the observed ivermectin pharmacokinetics, viral load, and NS1 data. Bodyweight was a significant covariate on ivermectin pharmacokinetics. We found that ivermectin reduced NS1 with an EC<sub>50</sub> of 67.5 μg/mL. In silico simulations suggested that ivermectin should be dosed within 48 h after fever onset, and that a daily dosage of 800 μg/kg could achieve substantial NS1 reduction. The in-host dengue model is useful to assess the drug effect in antiviral drug development for dengue fever.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In memoriam Lambertus ("Bert") A. Peletier 29 March 1937-16 December 2023: Furthering quantitative pharmacology through applied mathematics. 纪念兰伯特-佩利蒂埃(Lambertus ("Bert") A. Peletier) 1937 年 3 月 29 日--2023 年 12 月 16 日:通过应用数学促进定量药理学的发展。
IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-23 DOI: 10.1002/psp4.13236
Meindert Danhof, Piet H van der Graaf, Teun M Post, Sandra A G Visser, Klaas P Zuideveld, Stephan Schmidt
{"title":"In memoriam Lambertus (\"Bert\") A. Peletier 29 March 1937-16 December 2023: Furthering quantitative pharmacology through applied mathematics.","authors":"Meindert Danhof, Piet H van der Graaf, Teun M Post, Sandra A G Visser, Klaas P Zuideveld, Stephan Schmidt","doi":"10.1002/psp4.13236","DOIUrl":"https://doi.org/10.1002/psp4.13236","url":null,"abstract":"","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mathematical model of the relationship between pH holding time and erosive esophagitis healing rates. pH 保持时间与侵蚀性食管炎愈合率之间关系的数学模型。
IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-19 DOI: 10.1002/psp4.13235
Colin W Howden, Carmelo Scarpignato, Eckhard Leifke, Darcy J Mulford, Gezim Lahu, Axel Facius, Yuhong Yuan, Richard Hunt

Effective suppression of gastric acid secretion promotes healing of erosive esophagitis. Treatment guidelines recommend proton pump inhibitors (PPIs) and histamine H2-receptor antagonists (H2RAs). Emerging evidence also supports potassium-competitive acid blockers (P-CABs). The aim was to construct a mathematical model to examine the relationship between pH holding time ratios (HTRs) and erosive esophagitis healing rates with H2RAs, PPIs and P-CABs. By literature search, we identified studies of H2RAs, PPIs or P-CABs that reported mean pH >4 HTRs at steady state (days 5-8) and erosive esophagitis healing rates after 4 and/or 8 weeks. We aggregated treatments by drug class and developed a non-linear, mixed-effects model to explore the relationship between pH >4 HTRs and healing rates. The pH dataset included 82 studies (4297 participants; 201 dosage arms); healing rate data came from 103 studies (43,417 patients; 196 treatment arms). P-CABs achieved the longest periods with intragastric pH >4, and the highest healing rates after 4 and 8 weeks. The predicted probabilities of achieving ≥90% healing rates at 8 weeks were 74.1% for P-CABs, 17.3% for PPIs and 0% for H2RAs. P-CABs provide the longest duration with intragastric pH >4 and, accordingly, the highest healing rates of erosive esophagitis.

有效抑制胃酸分泌可促进侵蚀性食管炎的愈合。治疗指南推荐使用质子泵抑制剂(PPIs)和组胺 H2 受体拮抗剂(H2RAs)。新的证据也支持钾竞争性酸阻滞剂(P-CABs)。我们的目的是建立一个数学模型,研究 H2RA、PPI 和 P-CABs 的 pH 保持时间比 (HTR) 与侵蚀性食管炎愈合率之间的关系。通过文献检索,我们确定了有关 H2RAs、PPIs 或 P-CABs 的研究,这些研究报告了稳态(第 5-8 天)时平均 pH >4 HTRs 与 4 周和/或 8 周后侵蚀性食管炎愈合率的关系。我们按药物类别汇总了各种治疗方法,并建立了一个非线性混合效应模型来探讨 pH >4 HTR 与治愈率之间的关系。pH 数据集包括 82 项研究(4297 名参与者;201 个剂量组);痊愈率数据来自 103 项研究(43417 名患者;196 个治疗组)。P-CABs胃内pH值大于4的时间最长,4周和8周后的愈合率最高。8 周后达到≥90% 愈合率的预测概率为:P-CABs 74.1%,PPIs 17.3%,H2RAs 0%。P-CABs 胃内 pH 值大于 4 的持续时间最长,因此侵蚀性食管炎的治愈率也最高。
{"title":"Mathematical model of the relationship between pH holding time and erosive esophagitis healing rates.","authors":"Colin W Howden, Carmelo Scarpignato, Eckhard Leifke, Darcy J Mulford, Gezim Lahu, Axel Facius, Yuhong Yuan, Richard Hunt","doi":"10.1002/psp4.13235","DOIUrl":"https://doi.org/10.1002/psp4.13235","url":null,"abstract":"<p><p>Effective suppression of gastric acid secretion promotes healing of erosive esophagitis. Treatment guidelines recommend proton pump inhibitors (PPIs) and histamine H<sub>2</sub>-receptor antagonists (H<sub>2</sub>RAs). Emerging evidence also supports potassium-competitive acid blockers (P-CABs). The aim was to construct a mathematical model to examine the relationship between pH holding time ratios (HTRs) and erosive esophagitis healing rates with H<sub>2</sub>RAs, PPIs and P-CABs. By literature search, we identified studies of H<sub>2</sub>RAs, PPIs or P-CABs that reported mean pH >4 HTRs at steady state (days 5-8) and erosive esophagitis healing rates after 4 and/or 8 weeks. We aggregated treatments by drug class and developed a non-linear, mixed-effects model to explore the relationship between pH >4 HTRs and healing rates. The pH dataset included 82 studies (4297 participants; 201 dosage arms); healing rate data came from 103 studies (43,417 patients; 196 treatment arms). P-CABs achieved the longest periods with intragastric pH >4, and the highest healing rates after 4 and 8 weeks. The predicted probabilities of achieving ≥90% healing rates at 8 weeks were 74.1% for P-CABs, 17.3% for PPIs and 0% for H<sub>2</sub>RAs. P-CABs provide the longest duration with intragastric pH >4 and, accordingly, the highest healing rates of erosive esophagitis.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Population pharmacokinetic-pharmacodynamic model of elinzanetant based on integrated clinical phase I and II data. 基于 I 期和 II 期临床综合数据的艾林扎尼坦群体药代动力学-药效学模型。
IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-18 DOI: 10.1002/psp4.13226
Stefan Willmann, Adam Lloyd, Rupert Austin, Shiju Joseph, Alexander Solms, Yang Zhang, Annika R P Schneider, Sebastian Frechen, Marcus-Hillert Schultze-Mosgau

Elinzanetant is a potent and selective dual neurokin-1 (NK-1) and -3 (NK-3) receptor antagonist that is currently developed for the treatment of women with moderate-to-severe vasomotor symptoms (VMS) associated with menopause. Here, we report the development of a population pharmacokinetic (popPK) model for elinzanetant and its principal metabolites based on an integrated dataset from 366 subjects (including 197 women with VMS) collected in 10 phase I or II studies. The pharmacokinetics of elinzanetant and its metabolites could be well described by the popPK model. Within the investigated dose range of 40-160 mg, the oral bioavailability of elinzanetant was dose independent and estimated to be 36.7%. The clearance of elinzanetant was estimated to be 7.26 L/h and the central and peripheral distribution volume were 23.7 and 168 L. No intrinsic or extrinsic influencing factors have been identified in the investigated population other than the effect of a high-fat breakfast on the oral absorption of elinzanetant. The popPK model was then coupled to a pharmacodynamic model to predict occupancies of the NK-1 and NK-3 receptors. After repeated once-daily administration of the anticipated therapeutic dose of 120 mg elinzanetant, the model-predicted median receptor occupancies are >99% for NK-1 and >94.8% for NK-3 during day and night-time, indicating sustained and near-complete inhibition of both target receptors during the dosing interval.

艾林扎尼坦是一种强效、选择性双神经激肽-1(NK-1)和-3(NK-3)受体拮抗剂,目前正被开发用于治疗与更年期相关的中重度血管运动症状(VMS)妇女。在此,我们报告了艾林扎尼坦及其主要代谢物的群体药代动力学(popPK)模型的开发情况,该模型基于在 10 项 I 期或 II 期研究中收集的 366 名受试者(包括 197 名 VMS 妇女)的综合数据集。popPK模型可以很好地描述艾林扎尼坦及其代谢物的药代动力学。在40-160毫克的研究剂量范围内,艾林扎尼坦的口服生物利用度与剂量无关,估计为36.7%。艾林扎尼坦的清除率估计为 7.26 升/小时,中心和外周分布容积分别为 23.7 升和 168 升。除了高脂早餐对艾林扎尼坦口服吸收的影响外,在调查人群中未发现其他内在或外在影响因素。然后将 popPK 模型与药效学模型相结合,预测 NK-1 和 NK-3 受体的占用率。在每天重复给药一次预期治疗剂量 120 毫克艾林扎尼坦后,模型预测的 NK-1 受体占据率中位数在白天和夜间均大于 99%,NK-3 受体占据率中位数大于 94.8%,这表明在给药间隔期间这两种靶受体均受到持续且近乎完全的抑制。
{"title":"Population pharmacokinetic-pharmacodynamic model of elinzanetant based on integrated clinical phase I and II data.","authors":"Stefan Willmann, Adam Lloyd, Rupert Austin, Shiju Joseph, Alexander Solms, Yang Zhang, Annika R P Schneider, Sebastian Frechen, Marcus-Hillert Schultze-Mosgau","doi":"10.1002/psp4.13226","DOIUrl":"https://doi.org/10.1002/psp4.13226","url":null,"abstract":"<p><p>Elinzanetant is a potent and selective dual neurokin-1 (NK-1) and -3 (NK-3) receptor antagonist that is currently developed for the treatment of women with moderate-to-severe vasomotor symptoms (VMS) associated with menopause. Here, we report the development of a population pharmacokinetic (popPK) model for elinzanetant and its principal metabolites based on an integrated dataset from 366 subjects (including 197 women with VMS) collected in 10 phase I or II studies. The pharmacokinetics of elinzanetant and its metabolites could be well described by the popPK model. Within the investigated dose range of 40-160 mg, the oral bioavailability of elinzanetant was dose independent and estimated to be 36.7%. The clearance of elinzanetant was estimated to be 7.26 L/h and the central and peripheral distribution volume were 23.7 and 168 L. No intrinsic or extrinsic influencing factors have been identified in the investigated population other than the effect of a high-fat breakfast on the oral absorption of elinzanetant. The popPK model was then coupled to a pharmacodynamic model to predict occupancies of the NK-1 and NK-3 receptors. After repeated once-daily administration of the anticipated therapeutic dose of 120 mg elinzanetant, the model-predicted median receptor occupancies are >99% for NK-1 and >94.8% for NK-3 during day and night-time, indicating sustained and near-complete inhibition of both target receptors during the dosing interval.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
CPT: Pharmacometrics & Systems Pharmacology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1