Prognostic significance and identification of m6A regulator genes and hub genes associated with m6A in breast cancer.

IF 2.8 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM Discover. Oncology Pub Date : 2024-11-12 DOI:10.1007/s12672-024-01521-z
Longjie Xia, Runchun Huang, Yingxiong Huang, Huixian Huang, Yunxiang Luo, Yixuan Qin, Shaoliang Zhu, Fanbiao Kong, Weiwei Miao
{"title":"Prognostic significance and identification of m6A regulator genes and hub genes associated with m6A in breast cancer.","authors":"Longjie Xia, Runchun Huang, Yingxiong Huang, Huixian Huang, Yunxiang Luo, Yixuan Qin, Shaoliang Zhu, Fanbiao Kong, Weiwei Miao","doi":"10.1007/s12672-024-01521-z","DOIUrl":null,"url":null,"abstract":"<p><p>This research endeavors to investigate the functions of N6-methyladenosine (m6A) regulatory genes and key genes linked to m6A modifications within the context of breast cancer (BC). The objective is to identify a promising predictive biomarker related to m6A modifications and validate its significance in BC through experimental methodologies. Utilizing data from The Cancer Genome Atlas (TCGA) database, a model for predicting prognosis was developed. Key genes connected to m6A modifications were discerned using weighted gene co-expression network analysis (WGCNA) coupled with LASSO and Cox regression analyses, which were then utilized to construct a predictive model. The influence of ZNF260 within BC was probed experimentally. The predictive model formulated using m6A regulatory genes and key m6A-associated genes demonstrated the capability to categorize BC patients into distinct risk groups effectively (all P < 0.001). Clinical sample analyses revealed notably elevated expression levels of ZNF260 in hormone receptor-positive/human epidermal growth factor receptor 2-negative (HR + /HER2-) BC tissues compared to adjacent non-tumor tissues (all P < 0.001). Reduction in ZNF260 expression was shown to inhibit the proliferation, clonogenicity, migration, and invasiveness of MCF-7 cells while concomitantly enhancing apoptosis (all P < 0.001).This investigation uniquely uncovered ZNF260 as a novel key gene, suggesting its potential utility as a predictive biomarker associated with m6A modifications specifically in HR + /HER2- BC.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554984/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-024-01521-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

This research endeavors to investigate the functions of N6-methyladenosine (m6A) regulatory genes and key genes linked to m6A modifications within the context of breast cancer (BC). The objective is to identify a promising predictive biomarker related to m6A modifications and validate its significance in BC through experimental methodologies. Utilizing data from The Cancer Genome Atlas (TCGA) database, a model for predicting prognosis was developed. Key genes connected to m6A modifications were discerned using weighted gene co-expression network analysis (WGCNA) coupled with LASSO and Cox regression analyses, which were then utilized to construct a predictive model. The influence of ZNF260 within BC was probed experimentally. The predictive model formulated using m6A regulatory genes and key m6A-associated genes demonstrated the capability to categorize BC patients into distinct risk groups effectively (all P < 0.001). Clinical sample analyses revealed notably elevated expression levels of ZNF260 in hormone receptor-positive/human epidermal growth factor receptor 2-negative (HR + /HER2-) BC tissues compared to adjacent non-tumor tissues (all P < 0.001). Reduction in ZNF260 expression was shown to inhibit the proliferation, clonogenicity, migration, and invasiveness of MCF-7 cells while concomitantly enhancing apoptosis (all P < 0.001).This investigation uniquely uncovered ZNF260 as a novel key gene, suggesting its potential utility as a predictive biomarker associated with m6A modifications specifically in HR + /HER2- BC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乳腺癌 m6A 调节基因和与 m6A 相关的枢纽基因的预后意义和鉴定。
本研究致力于研究乳腺癌(BC)中 N6-甲基腺苷(m6A)调控基因的功能以及与 m6A 修饰相关的关键基因。研究的目的是找出与 m6A 修饰相关的有前景的预测性生物标志物,并通过实验方法验证其在乳腺癌中的意义。利用癌症基因组图谱(TCGA)数据库中的数据,建立了一个预测预后的模型。通过加权基因共表达网络分析(WGCNA)以及LASSO和Cox回归分析,发现了与m6A修饰相关的关键基因,并以此构建了预测模型。实验探究了 ZNF260 在 BC 中的影响。利用 m6A 调控基因和关键 m6A 相关基因建立的预测模型显示,该模型能有效地将 BC 患者分为不同的风险组(所有 P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Discover. Oncology
Discover. Oncology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
2.40
自引率
9.10%
发文量
122
审稿时长
5 weeks
期刊最新文献
Circ_0124346 facilitates cell proliferation of pancreatic adenocarcinoma cells by regulating lipid metabolism via miR-223-3p/ACSL3 axis. Integrated single-cell analysis reveals heterogeneity and therapeutic insights in osteosarcoma. TMSB4X is a regulator of inflammation-associated ferroptosis, and promotes the proliferation, migration and invasion of hepatocellular carcinoma cells. Construction of a novel lipid drop-mitochondria-associated genetic profile for predicting the survival and prognosis of lung adenocarcinoma. Correlation between thyroid dysfunction and efficacy of immune checkpoint inhibitors in patients with advanced solid tumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1