Rahul Bodkhe, Kenneth Trang, Sabrina Hammond, Da Kyung Jung, Michael Shapira
{"title":"Emergence of dauer larvae in Caenorhabditis elegans disrupts continuity of host-microbiome interactions.","authors":"Rahul Bodkhe, Kenneth Trang, Sabrina Hammond, Da Kyung Jung, Michael Shapira","doi":"10.1093/femsec/fiae149","DOIUrl":null,"url":null,"abstract":"<p><p>Nematodes are common in most terrestrial environments, where populations are often known to undergo cycles of boom and bust. Useful in such scenarios, nematodes present developmental programs of diapause, giving rise to stress-resistant larvae and enabling dispersal in search of new resources. Best studied in Caenorhabditis elegans, stress resistant dauer larvae emerge under adverse conditions, primarily starvation, and migrate to new niches where they can resume development and reproduce. C. elegans is a bacterivore but has been shown to harbor a persistent and characteristic gut microbiome. While much is known about the gut microbiome of reproducing C. elegans, what dauers harbor is yet unknown. This is of interest, as dauers are those that would enable transmission of microbes between nematode generations and geographical sites, maintaining continuity of host-microbe interactions. Using culture-dependent as well as sequencing-based approaches we examined the gut microbiomes of dauers emerging following population growth on ten different natural-like microbially diverse environments as well as on two defined communities of known gut commensals and found that dauers were largely devoid of gut bacteria. These results suggest that host gut-microbiome interactions in C. elegans are not continuous across successive generations and may reduce the likelihood of long-term worm-microbe coevolution.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae149","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nematodes are common in most terrestrial environments, where populations are often known to undergo cycles of boom and bust. Useful in such scenarios, nematodes present developmental programs of diapause, giving rise to stress-resistant larvae and enabling dispersal in search of new resources. Best studied in Caenorhabditis elegans, stress resistant dauer larvae emerge under adverse conditions, primarily starvation, and migrate to new niches where they can resume development and reproduce. C. elegans is a bacterivore but has been shown to harbor a persistent and characteristic gut microbiome. While much is known about the gut microbiome of reproducing C. elegans, what dauers harbor is yet unknown. This is of interest, as dauers are those that would enable transmission of microbes between nematode generations and geographical sites, maintaining continuity of host-microbe interactions. Using culture-dependent as well as sequencing-based approaches we examined the gut microbiomes of dauers emerging following population growth on ten different natural-like microbially diverse environments as well as on two defined communities of known gut commensals and found that dauers were largely devoid of gut bacteria. These results suggest that host gut-microbiome interactions in C. elegans are not continuous across successive generations and may reduce the likelihood of long-term worm-microbe coevolution.
期刊介绍:
FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology.
- Application of ecological theory to microbial ecology
- Interactions and signalling between microorganisms and with plants and animals
- Interactions between microorganisms and their physicochemical enviornment
- Microbial aspects of biogeochemical cycles and processes
- Microbial community ecology
- Phylogenetic and functional diversity of microbial communities
- Evolutionary biology of microorganisms