José E Teixeira, Samuel Encarnação, Luís Branquinho, Ricardo Ferraz, Daniel L Portella, Diogo Monteiro, Ryland Morgans, Tiago M Barbosa, António M Monteiro, Pedro Forte
{"title":"Classification of recovery states in U15, U17, and U19 sub-elite football players: a machine learning approach.","authors":"José E Teixeira, Samuel Encarnação, Luís Branquinho, Ricardo Ferraz, Daniel L Portella, Diogo Monteiro, Ryland Morgans, Tiago M Barbosa, António M Monteiro, Pedro Forte","doi":"10.3389/fpsyg.2024.1447968","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>A promising approach to optimizing recovery in youth football has been the use of machine learning (ML) models to predict recovery states and prevent mental fatigue. This research investigates the application of ML models in classifying male young football players aged under (U)15, U17, and U19 according to their recovery state. Weekly training load data were systematically monitored across three age groups throughout the initial month of the 2019-2020 competitive season, covering 18 training sessions and 120 observation instances. Outfield players were tracked using portable 18-Hz global positioning system (GPS) devices, while heart rate (HR) was measured using 1 Hz telemetry HR bands. The rating of perceived exertion (RPE 6-20) and total quality recovery (TQR 6-20) scores were employed to evaluate perceived exertion, internal training load, and recovery state, respectively. Data preprocessing involved handling missing values, normalization, and feature selection using correlation coefficients and a random forest (RF) classifier. Five ML algorithms [K-nearest neighbors (KNN), extreme gradient boosting (XGBoost), support vector machine (SVM), RF, and decision tree (DT)] were assessed for classification performance. The K-fold method was employed to cross-validate the ML outputs.</p><p><strong>Results: </strong>A high accuracy for this ML classification model (73-100%) was verified. The feature selection highlighted critical variables, and we implemented the ML algorithms considering a panel of 9 variables (U15, U19, body mass, accelerations, decelerations, training weeks, sprint distance, and RPE). These features were included according to their percentage of importance (3-18%). The results were cross-validated with good accuracy across 5-fold (79%).</p><p><strong>Conclusion: </strong>The five ML models, in combination with weekly data, demonstrated the efficacy of wearable device-collected features as an efficient combination in predicting football players' recovery states.</p>","PeriodicalId":12525,"journal":{"name":"Frontiers in Psychology","volume":"15 ","pages":"1447968"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554510/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3389/fpsyg.2024.1447968","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: A promising approach to optimizing recovery in youth football has been the use of machine learning (ML) models to predict recovery states and prevent mental fatigue. This research investigates the application of ML models in classifying male young football players aged under (U)15, U17, and U19 according to their recovery state. Weekly training load data were systematically monitored across three age groups throughout the initial month of the 2019-2020 competitive season, covering 18 training sessions and 120 observation instances. Outfield players were tracked using portable 18-Hz global positioning system (GPS) devices, while heart rate (HR) was measured using 1 Hz telemetry HR bands. The rating of perceived exertion (RPE 6-20) and total quality recovery (TQR 6-20) scores were employed to evaluate perceived exertion, internal training load, and recovery state, respectively. Data preprocessing involved handling missing values, normalization, and feature selection using correlation coefficients and a random forest (RF) classifier. Five ML algorithms [K-nearest neighbors (KNN), extreme gradient boosting (XGBoost), support vector machine (SVM), RF, and decision tree (DT)] were assessed for classification performance. The K-fold method was employed to cross-validate the ML outputs.
Results: A high accuracy for this ML classification model (73-100%) was verified. The feature selection highlighted critical variables, and we implemented the ML algorithms considering a panel of 9 variables (U15, U19, body mass, accelerations, decelerations, training weeks, sprint distance, and RPE). These features were included according to their percentage of importance (3-18%). The results were cross-validated with good accuracy across 5-fold (79%).
Conclusion: The five ML models, in combination with weekly data, demonstrated the efficacy of wearable device-collected features as an efficient combination in predicting football players' recovery states.
期刊介绍:
Frontiers in Psychology is the largest journal in its field, publishing rigorously peer-reviewed research across the psychological sciences, from clinical research to cognitive science, from perception to consciousness, from imaging studies to human factors, and from animal cognition to social psychology. Field Chief Editor Axel Cleeremans at the Free University of Brussels is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide. The journal publishes the best research across the entire field of psychology. Today, psychological science is becoming increasingly important at all levels of society, from the treatment of clinical disorders to our basic understanding of how the mind works. It is highly interdisciplinary, borrowing questions from philosophy, methods from neuroscience and insights from clinical practice - all in the goal of furthering our grasp of human nature and society, as well as our ability to develop new intervention methods.