{"title":"Structure-mutagenicity relationships on quinoline and indole analogues in the Ames test.","authors":"Masaki Kurakami, Atsushi Hakura, Rika Sato, Akihiro Kawade, Takeshi Yamagata, Naoki Koyama, Dai Kakiuchi, Shoji Asakura","doi":"10.1186/s41021-024-00316-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Although the in silico predictive ability of the Ames test results has recently made remarkable progress, there are still some chemical classes for which the predictive ability is not yet sufficient due to a lack of Ames test data. These classes include simple heterocyclic compounds. This study aimed to investigate the mutagenicity and structure-mutagenicity relationships for some heterocycles in the Ames test. In the present study, we selected 12 quinoline analogues containing one or two nitrogen atoms in the naphthalene ring and 12 indole analogues containing one to three nitrogen atoms in the indole ring, without any side moiety.</p><p><strong>Results: </strong>The Ames test was performed with five standard bacterial strains (TA100, TA1535, TA98, TA1537, and WP2uvrA) using the pre-incubation method with and without rat liver S9. Five quinoline and two indole analogues were mutagenic. Among the five quinoline analogues, four were mutagenic in the presence of S9 mix with TA100, whereas cinnoline was mutagenic in the absence of S9 mix with TA1537. Among the two indole analogues, indazole was mutagenic in the presence and absence of S9 mix with WP2uvrA and 4-azaindole was mutagenic in the absence of S9 mix with TA1537. The mechanisms underlying the induction of mutagenesis appear to differ between quinoline and indole analogues. In addition, we performed in silico analysis of the mutagenicity of all these analogues using DEREK Nexus 6.1.1 (Lhasa Limited) and GT_EXPERT from CASE Ultra 1.8.0.5 (MultiCASE Inc.) as knowledge-based models and GT1_BMUT from CASE Ultra 1.8.0.5 (MultiCASE Inc.) as a statistical-based model. The knowledge-based model showed low sensitivity for both the quinoline and indole analogues (DEREK Nexus and GT_EXPERT: 20% for quinolines and 0% for indoles). Conversely, the statistical model showed high sensitivity (100% for both quinolines and indoles) and low specificity (43% for quinolines and 10% for indoles).</p><p><strong>Conclusion: </strong>Based on the Ames test results, we proposed structural alerts noting that quinoline analogues were mutagenic when they had nitrogens in any of the positions 2, 5, 7, or 8 in addition to 1, and indole analogues were mutagenic when they had nitrogens at positions 2 or 4 in addition to 1.</p>","PeriodicalId":12709,"journal":{"name":"Genes and Environment","volume":"46 1","pages":"23"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566429/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and Environment","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s41021-024-00316-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Although the in silico predictive ability of the Ames test results has recently made remarkable progress, there are still some chemical classes for which the predictive ability is not yet sufficient due to a lack of Ames test data. These classes include simple heterocyclic compounds. This study aimed to investigate the mutagenicity and structure-mutagenicity relationships for some heterocycles in the Ames test. In the present study, we selected 12 quinoline analogues containing one or two nitrogen atoms in the naphthalene ring and 12 indole analogues containing one to three nitrogen atoms in the indole ring, without any side moiety.
Results: The Ames test was performed with five standard bacterial strains (TA100, TA1535, TA98, TA1537, and WP2uvrA) using the pre-incubation method with and without rat liver S9. Five quinoline and two indole analogues were mutagenic. Among the five quinoline analogues, four were mutagenic in the presence of S9 mix with TA100, whereas cinnoline was mutagenic in the absence of S9 mix with TA1537. Among the two indole analogues, indazole was mutagenic in the presence and absence of S9 mix with WP2uvrA and 4-azaindole was mutagenic in the absence of S9 mix with TA1537. The mechanisms underlying the induction of mutagenesis appear to differ between quinoline and indole analogues. In addition, we performed in silico analysis of the mutagenicity of all these analogues using DEREK Nexus 6.1.1 (Lhasa Limited) and GT_EXPERT from CASE Ultra 1.8.0.5 (MultiCASE Inc.) as knowledge-based models and GT1_BMUT from CASE Ultra 1.8.0.5 (MultiCASE Inc.) as a statistical-based model. The knowledge-based model showed low sensitivity for both the quinoline and indole analogues (DEREK Nexus and GT_EXPERT: 20% for quinolines and 0% for indoles). Conversely, the statistical model showed high sensitivity (100% for both quinolines and indoles) and low specificity (43% for quinolines and 10% for indoles).
Conclusion: Based on the Ames test results, we proposed structural alerts noting that quinoline analogues were mutagenic when they had nitrogens in any of the positions 2, 5, 7, or 8 in addition to 1, and indole analogues were mutagenic when they had nitrogens at positions 2 or 4 in addition to 1.
期刊介绍:
Genes and Environment is an open access, peer-reviewed journal that aims to accelerate communications among global scientists working in the field of genes and environment. The journal publishes articles across a broad range of topics including environmental mutagenesis and carcinogenesis, environmental genomics and epigenetics, molecular epidemiology, genetic toxicology and regulatory sciences.
Topics published in the journal include, but are not limited to, mutagenesis and anti-mutagenesis in bacteria; genotoxicity in mammalian somatic cells; genotoxicity in germ cells; replication and repair; DNA damage; metabolic activation and inactivation; water and air pollution; ROS, NO and photoactivation; pharmaceuticals and anticancer agents; radiation; endocrine disrupters; indirect mutagenesis; threshold; new techniques for environmental mutagenesis studies; DNA methylation (enzymatic); structure activity relationship; chemoprevention of cancer; regulatory science. Genetic toxicology including risk evaluation for human health, validation studies on testing methods and subjects of guidelines for regulation of chemicals are also within its scope.