{"title":"Micellar solubility and co-solubilization of fragrance raw materials in sodium dodecyl sulfate and polysorbate 20 surfactant systems.","authors":"Christine Tilghman, S Kevin Li, Laura A Spaulding","doi":"10.1111/ics.13032","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of this work was to investigate the solubility and co-solubilization of fragrance raw materials (FRMs) in sodium dodecyl sulfate (SDS) and polysorbate 20 (P20) surfactant micellar systems, which can advance our knowledge of multi-solute micellar solubilization and fragrance olfactory performance from product matrices containing the surfactants.</p><p><strong>Methods: </strong>The transfer of individual FRMs and binary FRM mixtures into micellar phases was quantified by UV-VIS differential spectroscopy and evaluated in terms of the standard Gibbs free energy change and micelle-water partition coefficient. Co-solubilization effects were further evaluated by the deviation ratio.</p><p><strong>Results: </strong>Anionic SDS was found overall to be a more efficient solubilizer than nonionic P20. On an individual basis, micellar solubilization generally increased with solute lipophilicity but was additionally impacted by solute rigidity and steric effects. Micellar solubilization was favoured for more rigid structures and less favoured for FRMs that exhibited larger molecular rotation and steric hindrance. For multi-solute systems, three co-solubilization effects were observed: (i) inhibitive effect in which micellar partitioning of both solutes decreased, (ii) an inverse effect where partitioning of one solute increased while the other decreased and (iii) synergistic effect in which partitioning of both solutes increased. During co-solubilization in P20 micelles, many FRMs competed for solubilization between the polyoxyethylene chains in the outer layer of the micelle, thereby resulting in an inhibitory effect for both solutes. Co-solubilization of FRM binary mixtures in SDS micelles often resulted in a synergistic increase in micellar solubility, possibly due to micellar swelling, thereby facilitating partitioning of additional solutes into the micelle. An inverse effect in which the micellar solubility of one solute increased, while the other decreased was observed in both surfactant systems with varying degrees of partitioning depending on the composition of the FRM mixture.</p><p><strong>Conclusions: </strong>The results of this study provide valuable insights into the impact of FRM composition on multi-solute partitioning behaviour and the impact of surfactant type on co-solubilization in micellar solutions.</p>","PeriodicalId":13936,"journal":{"name":"International Journal of Cosmetic Science","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cosmetic Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/ics.13032","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The aim of this work was to investigate the solubility and co-solubilization of fragrance raw materials (FRMs) in sodium dodecyl sulfate (SDS) and polysorbate 20 (P20) surfactant micellar systems, which can advance our knowledge of multi-solute micellar solubilization and fragrance olfactory performance from product matrices containing the surfactants.
Methods: The transfer of individual FRMs and binary FRM mixtures into micellar phases was quantified by UV-VIS differential spectroscopy and evaluated in terms of the standard Gibbs free energy change and micelle-water partition coefficient. Co-solubilization effects were further evaluated by the deviation ratio.
Results: Anionic SDS was found overall to be a more efficient solubilizer than nonionic P20. On an individual basis, micellar solubilization generally increased with solute lipophilicity but was additionally impacted by solute rigidity and steric effects. Micellar solubilization was favoured for more rigid structures and less favoured for FRMs that exhibited larger molecular rotation and steric hindrance. For multi-solute systems, three co-solubilization effects were observed: (i) inhibitive effect in which micellar partitioning of both solutes decreased, (ii) an inverse effect where partitioning of one solute increased while the other decreased and (iii) synergistic effect in which partitioning of both solutes increased. During co-solubilization in P20 micelles, many FRMs competed for solubilization between the polyoxyethylene chains in the outer layer of the micelle, thereby resulting in an inhibitory effect for both solutes. Co-solubilization of FRM binary mixtures in SDS micelles often resulted in a synergistic increase in micellar solubility, possibly due to micellar swelling, thereby facilitating partitioning of additional solutes into the micelle. An inverse effect in which the micellar solubility of one solute increased, while the other decreased was observed in both surfactant systems with varying degrees of partitioning depending on the composition of the FRM mixture.
Conclusions: The results of this study provide valuable insights into the impact of FRM composition on multi-solute partitioning behaviour and the impact of surfactant type on co-solubilization in micellar solutions.
期刊介绍:
The Journal publishes original refereed papers, review papers and correspondence in the fields of cosmetic research. It is read by practising cosmetic scientists and dermatologists, as well as specialists in more diverse disciplines that are developing new products which contact the skin, hair, nails or mucous membranes.
The aim of the Journal is to present current scientific research, both pure and applied, in: cosmetics, toiletries, perfumery and allied fields. Areas that are of particular interest include: studies in skin physiology and interactions with cosmetic ingredients, innovation in claim substantiation methods (in silico, in vitro, ex vivo, in vivo), human and in vitro safety testing of cosmetic ingredients and products, physical chemistry and technology of emulsion and dispersed systems, theory and application of surfactants, new developments in olfactive research, aerosol technology and selected aspects of analytical chemistry.