Contrast-enhanced thin-slice abdominal CT with super-resolution deep learning reconstruction technique: evaluation of image quality and visibility of anatomical structures.
{"title":"Contrast-enhanced thin-slice abdominal CT with super-resolution deep learning reconstruction technique: evaluation of image quality and visibility of anatomical structures.","authors":"Atsushi Nakamoto, Hiromitsu Onishi, Takashi Ota, Toru Honda, Takahiro Tsuboyama, Hideyuki Fukui, Kengo Kiso, Shohei Matsumoto, Koki Kaketaka, Takumi Tanigaki, Kei Terashima, Yukihiro Enchi, Shuichi Kawabata, Shinya Nakasone, Mitsuaki Tatsumi, Noriyuki Tomiyama","doi":"10.1007/s11604-024-01685-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To compare image quality and visibility of anatomical structures on contrast-enhanced thin-slice abdominal CT images reconstructed using super-resolution deep learning reconstruction (SR-DLR), deep learning-based reconstruction (DLR), and hybrid iterative reconstruction (HIR) algorithms.</p><p><strong>Materials and methods: </strong>This retrospective study included 54 consecutive patients who underwent contrast-enhanced abdominal CT. Thin-slice images (0.5 mm thickness) were reconstructed using SR-DLR, DLR, and HIR. Objective image noise and contrast-to-noise ratio (CNR) for liver parenchyma relative to muscle were assessed. Two radiologists independently graded image quality using a 5-point rating scale for image noise, sharpness, artifact/blur, and overall image quality. They also graded the visibility of small vessels, main pancreatic duct, ureters, adrenal glands, and right adrenal vein on a 5-point scale.</p><p><strong>Results: </strong>SR-DLR yielded significantly lower objective image noise and higher CNR than DLR and HIR (P < .001). The visual scores of SR-DLR for image noise, sharpness, and overall image quality were significantly higher than those of DLR and HIR for both readers (P < .001). Both readers scored significantly higher on SR-DLR than on HIR for visibility for all structures (P < .01), and at least one reader scored significantly higher on SR-DLR than on DLR for visibility for all structures (P < .05).</p><p><strong>Conclusion: </strong>SR-DLR reduced image noise and improved image quality of thin-slice abdominal CT images compared to HIR and DLR. This technique is expected to enable further detailed evaluation of small structures.</p>","PeriodicalId":14691,"journal":{"name":"Japanese Journal of Radiology","volume":" ","pages":"445-454"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868232/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japanese Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11604-024-01685-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To compare image quality and visibility of anatomical structures on contrast-enhanced thin-slice abdominal CT images reconstructed using super-resolution deep learning reconstruction (SR-DLR), deep learning-based reconstruction (DLR), and hybrid iterative reconstruction (HIR) algorithms.
Materials and methods: This retrospective study included 54 consecutive patients who underwent contrast-enhanced abdominal CT. Thin-slice images (0.5 mm thickness) were reconstructed using SR-DLR, DLR, and HIR. Objective image noise and contrast-to-noise ratio (CNR) for liver parenchyma relative to muscle were assessed. Two radiologists independently graded image quality using a 5-point rating scale for image noise, sharpness, artifact/blur, and overall image quality. They also graded the visibility of small vessels, main pancreatic duct, ureters, adrenal glands, and right adrenal vein on a 5-point scale.
Results: SR-DLR yielded significantly lower objective image noise and higher CNR than DLR and HIR (P < .001). The visual scores of SR-DLR for image noise, sharpness, and overall image quality were significantly higher than those of DLR and HIR for both readers (P < .001). Both readers scored significantly higher on SR-DLR than on HIR for visibility for all structures (P < .01), and at least one reader scored significantly higher on SR-DLR than on DLR for visibility for all structures (P < .05).
Conclusion: SR-DLR reduced image noise and improved image quality of thin-slice abdominal CT images compared to HIR and DLR. This technique is expected to enable further detailed evaluation of small structures.
期刊介绍:
Japanese Journal of Radiology is a peer-reviewed journal, officially published by the Japan Radiological Society. The main purpose of the journal is to provide a forum for the publication of papers documenting recent advances and new developments in the field of radiology in medicine and biology. The scope of Japanese Journal of Radiology encompasses but is not restricted to diagnostic radiology, interventional radiology, radiation oncology, nuclear medicine, radiation physics, and radiation biology. Additionally, the journal covers technical and industrial innovations. The journal welcomes original articles, technical notes, review articles, pictorial essays and letters to the editor. The journal also provides announcements from the boards and the committees of the society. Membership in the Japan Radiological Society is not a prerequisite for submission. Contributions are welcomed from all parts of the world.