Production of a cellulose-aminating polysaccharide from a filamentous sulfur-oxidizing bacterium, Thiothrix nivea, grown lithotrophically or mixotrophically.
{"title":"Production of a cellulose-aminating polysaccharide from a filamentous sulfur-oxidizing bacterium, Thiothrix nivea, grown lithotrophically or mixotrophically.","authors":"Tomoaki Saito, Yunkun Qiao, Yui Araki, Naoki Matsunaga, Wataru Osugi, Keiko Kondo, Masato Katahira, Minoru Takeda","doi":"10.1093/jambio/lxae288","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Glucosaminoglucan (β-1,4-linked glucose and glucosamine) produced by a mixotrophic sulfur-oxidizing bacterium, Thiothrix nivea, is a useful cellulose-aminating agent. Lithotrophic and mixotrophic glucosaminoglucan production were examined using fed-batch techniques.</p><p><strong>Methods and results: </strong>A jar fermenter was used for the fed-batch cultivation. Glucosaminoglucan was extracted from T. nivea using diluted HCl. Lithotrophic growth was detected by feeding with Na2S as the energy source, and 12 mg L-culture-1 of glucosaminoglucan was obtained. In contrast, no growth was observed with Na2S2O3. Similarly, mixotrophic growth in the presence of acetic acid was promoted by Na2S, whereas Na2S2O3 had no effect. When acetic acid and Na2S were added, 470 mg L-culture-1 of glucosaminoglucan was obtained.</p><p><strong>Conclusions: </strong>T. nivea was cultured and glucosaminoglucan was produced lithotrophically using Na2S for feeding. Na2S is also indispensable for mixotrophic growth and glucosaminoglucan production, indicating that sulfide oxidation pathways control the TCA cycle. The involvement of the SOX pathway (for thiosulfate oxidation) in the activation of energy metabolism is doubtful because neither lithotrophic nor mixotrophic growth was promoted by Na2S2O3. Based on these results, we assumed that T. nivea is facultatively mixotrophic (lithotrophic growth is possible in addition to organotrophic growth in the presence of sulfide (Na2S)), rather than obligately mixotrophic.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxae288","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Glucosaminoglucan (β-1,4-linked glucose and glucosamine) produced by a mixotrophic sulfur-oxidizing bacterium, Thiothrix nivea, is a useful cellulose-aminating agent. Lithotrophic and mixotrophic glucosaminoglucan production were examined using fed-batch techniques.
Methods and results: A jar fermenter was used for the fed-batch cultivation. Glucosaminoglucan was extracted from T. nivea using diluted HCl. Lithotrophic growth was detected by feeding with Na2S as the energy source, and 12 mg L-culture-1 of glucosaminoglucan was obtained. In contrast, no growth was observed with Na2S2O3. Similarly, mixotrophic growth in the presence of acetic acid was promoted by Na2S, whereas Na2S2O3 had no effect. When acetic acid and Na2S were added, 470 mg L-culture-1 of glucosaminoglucan was obtained.
Conclusions: T. nivea was cultured and glucosaminoglucan was produced lithotrophically using Na2S for feeding. Na2S is also indispensable for mixotrophic growth and glucosaminoglucan production, indicating that sulfide oxidation pathways control the TCA cycle. The involvement of the SOX pathway (for thiosulfate oxidation) in the activation of energy metabolism is doubtful because neither lithotrophic nor mixotrophic growth was promoted by Na2S2O3. Based on these results, we assumed that T. nivea is facultatively mixotrophic (lithotrophic growth is possible in addition to organotrophic growth in the presence of sulfide (Na2S)), rather than obligately mixotrophic.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.