Conservation of the Polyamines Pathway in Ustilaginomycetes A Genomic and Experimental Approach.

IF 3.5 4区 生物学 Q2 MICROBIOLOGY Journal of Basic Microbiology Pub Date : 2024-11-11 DOI:10.1002/jobm.202400561
Domingo Martínez-Soto, Albo J Hernández-Rojas, Laura Valdés-Santiago, Luis F García-Ortega, Adriana Ramírez-Martínez, Elías Trujillo-Esquivel, Fernando Pérez-Rodríguez, Lucila Ortiz-Castellanos, Claudia G León-Ramírez, Edgardo Ulises Esquivel-Naranjo, José Ruiz-Herrera, José Antonio Cervantes-Chávez
{"title":"Conservation of the Polyamines Pathway in Ustilaginomycetes A Genomic and Experimental Approach.","authors":"Domingo Martínez-Soto, Albo J Hernández-Rojas, Laura Valdés-Santiago, Luis F García-Ortega, Adriana Ramírez-Martínez, Elías Trujillo-Esquivel, Fernando Pérez-Rodríguez, Lucila Ortiz-Castellanos, Claudia G León-Ramírez, Edgardo Ulises Esquivel-Naranjo, José Ruiz-Herrera, José Antonio Cervantes-Chávez","doi":"10.1002/jobm.202400561","DOIUrl":null,"url":null,"abstract":"<p><p>Polyamines are organic and aliphatic molecules essential for the growth, development, and survival of both eukaryotes and prokaryotes. In fungi, polyamines play a crucial role in cellular differentiation and pathogenesis. Since fungi and animals are closely related evolutionarily, and fungi can be easily genetically manipulated in the lab, they serve as excellent models for studying polyamine metabolism and the molecular mechanisms controlled by these biomolecules. Although the metabolism of polyamines has been extensively studied in model fungi such as Saccharomyces cerevisiae and Ustilago maydis, the conservation of the polyamine biosynthesis pathway in other Ustilaginomycetes, a class of fungi that includes phytopathogens, saprophytes, mutualists, and mycorrhizae, has not been thoroughly investigated. In this study, using a genomic and bioinformatics approach, we analyzed the conservation of the polyamine biosynthesis pathway in Ustilaginomycetes. Additionally, we confirmed the functional conservation of ornithine decarboxylase (Odc), which is involved in the synthesis of putrescine, one of the most important polyamines in fungi and complex multicellular eukaryotic organisms, using genetics and molecular biology tools. Moreover, we identified the differentially regulated genes by this polyamine in U. maydis. This research provides insights into the similarities and differences in the conservation of the polyamine biosynthesis pathway in fungi, and it expands our understanding of the role of polyamines and the mechanisms regulated by these molecules in eukaryotes.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e2400561"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jobm.202400561","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Polyamines are organic and aliphatic molecules essential for the growth, development, and survival of both eukaryotes and prokaryotes. In fungi, polyamines play a crucial role in cellular differentiation and pathogenesis. Since fungi and animals are closely related evolutionarily, and fungi can be easily genetically manipulated in the lab, they serve as excellent models for studying polyamine metabolism and the molecular mechanisms controlled by these biomolecules. Although the metabolism of polyamines has been extensively studied in model fungi such as Saccharomyces cerevisiae and Ustilago maydis, the conservation of the polyamine biosynthesis pathway in other Ustilaginomycetes, a class of fungi that includes phytopathogens, saprophytes, mutualists, and mycorrhizae, has not been thoroughly investigated. In this study, using a genomic and bioinformatics approach, we analyzed the conservation of the polyamine biosynthesis pathway in Ustilaginomycetes. Additionally, we confirmed the functional conservation of ornithine decarboxylase (Odc), which is involved in the synthesis of putrescine, one of the most important polyamines in fungi and complex multicellular eukaryotic organisms, using genetics and molecular biology tools. Moreover, we identified the differentially regulated genes by this polyamine in U. maydis. This research provides insights into the similarities and differences in the conservation of the polyamine biosynthesis pathway in fungi, and it expands our understanding of the role of polyamines and the mechanisms regulated by these molecules in eukaryotes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多胺途径在子囊菌中的保存 基因组和实验方法
多胺是真核生物和原核生物生长、发育和生存所必需的有机脂肪族分子。在真菌中,多胺在细胞分化和致病过程中起着至关重要的作用。由于真菌和动物在进化过程中关系密切,而且真菌很容易在实验室中进行遗传操作,因此它们是研究多胺代谢和这些生物大分子控制的分子机制的极佳模型。虽然多胺的新陈代谢在模式真菌如酿酒酵母(Saccharomyces cerevisiae)和麦角菌(Ustilago maydis)中得到了广泛的研究,但多胺生物合成途径在其他子囊菌(Ustilaginomycetes)中的保存情况还没有得到深入的研究。在这项研究中,我们利用基因组学和生物信息学方法,分析了多胺生物合成途径在子囊菌中的保存情况。此外,我们还利用遗传学和分子生物学工具证实了鸟氨酸脱羧酶(Odc)的功能保守性,该酶参与了腐胺的合成,而腐胺是真菌和复杂多细胞真核生物中最重要的多胺之一。此外,我们还确定了这种多胺在 U. maydis 中的不同调控基因。这项研究深入揭示了真菌中多胺生物合成途径的异同,拓展了我们对真核生物中多胺的作用及其调控机制的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Basic Microbiology
Journal of Basic Microbiology 生物-微生物学
CiteScore
6.10
自引率
0.00%
发文量
134
审稿时长
1.8 months
期刊介绍: The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions. Papers published deal with: microbial interactions (pathogenic, mutualistic, environmental), ecology, physiology, genetics and cell biology/development, new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications) novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).
期刊最新文献
Natural Products Produced by the Species of Bacillus cereus Group: Recent Updates. A Novel Cold-Adapted Catechol 1,2-Dioxygenase From Antarctic Sea-Ice Bacterium Halomonas sp. ANT108: Characterization and Immobilization. Plant Growth-Promoting Bacteria Associated With Some Salt-Tolerant Plants. Regulation of MareA Gene on Monascus Growth and Metabolism Under Different Nitrogen Sources. Roseomonas aestuarii, as a Potential In Situ Surfactin Producer During Hydrocarbon Biodegradation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1