Design, synthesis, biological evaluation, and molecular modeling studies of some quinazolin-4(3H)-one-benzenesulfonamide hybrids as potential α-glucosidase inhibitors.
{"title":"Design, synthesis, biological evaluation, and molecular modeling studies of some quinazolin-4(3<i>H</i>)-one-benzenesulfonamide hybrids as potential α-glucosidase inhibitors.","authors":"Emre Kadir Ayan, Güneş Çoban, Zeynep Soyer","doi":"10.1080/07391102.2024.2427373","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus is a chronic metabolic disorder characterized by hyperglycemia, posing serious health risks and becoming increasingly prevalent. Prolonged hyperglycemia can lead to complications such as nephropathy, neuropathy, retinopathy, cardiovascular damage, and blindness. Controlling hyperglycemia through α-glucosidase inhibitors, which slow down carbohydrate breakdown, is an effective treatment strategy. However, current inhibitors like acarbose, voglibose, and miglitol while used to manage type 2 diabetes, have significant side effects. Therefore, developing new α-glucosidase inhibitors that are more effective and have fewer side effects is crucial. In this study, a series of novel quinazolin-4(3<i>H</i>)-one-benzenesulfonamide hybrid compounds were designed, synthesized, and evaluated for <i>in vitro</i> α-glucosidase inhibitory activity. The compounds showed higher enzyme inhibition potency, with IC<sub>50</sub> values ranging between 129.2 ± 0.5 and 558.7 ± 13.7 µM, compared to acarbose (IC<sub>50</sub>=814.3 ± 13.5 µM). Among the tested compounds, compound <b>10</b>, bearing a 4-chlorophenyl ring on the nitrogen atom of the sulfonamide group, was the most active, with an IC<sub>50</sub> value of 129.2 ± 0.5 µM. Enzyme kinetics analyses and molecular modeling studies were conducted to understand their inhibition mechanisms and interactions with the enzyme. The kinetic studies revealed a mixed-type inhibition model, indicating that the compounds bind to the enzyme-substrate complex with higher affinity than to the free enzyme. Molecular modeling results confirmed these findings. Additionally, <i>in silico</i> prediction studies showed that the selected compounds have favourable physicochemical and drug-like properties. These results suggest these compounds have potential for further optimization and development as effective α-glucosidase inhibitors for diabetes treatment.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-21"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2427373","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by hyperglycemia, posing serious health risks and becoming increasingly prevalent. Prolonged hyperglycemia can lead to complications such as nephropathy, neuropathy, retinopathy, cardiovascular damage, and blindness. Controlling hyperglycemia through α-glucosidase inhibitors, which slow down carbohydrate breakdown, is an effective treatment strategy. However, current inhibitors like acarbose, voglibose, and miglitol while used to manage type 2 diabetes, have significant side effects. Therefore, developing new α-glucosidase inhibitors that are more effective and have fewer side effects is crucial. In this study, a series of novel quinazolin-4(3H)-one-benzenesulfonamide hybrid compounds were designed, synthesized, and evaluated for in vitro α-glucosidase inhibitory activity. The compounds showed higher enzyme inhibition potency, with IC50 values ranging between 129.2 ± 0.5 and 558.7 ± 13.7 µM, compared to acarbose (IC50=814.3 ± 13.5 µM). Among the tested compounds, compound 10, bearing a 4-chlorophenyl ring on the nitrogen atom of the sulfonamide group, was the most active, with an IC50 value of 129.2 ± 0.5 µM. Enzyme kinetics analyses and molecular modeling studies were conducted to understand their inhibition mechanisms and interactions with the enzyme. The kinetic studies revealed a mixed-type inhibition model, indicating that the compounds bind to the enzyme-substrate complex with higher affinity than to the free enzyme. Molecular modeling results confirmed these findings. Additionally, in silico prediction studies showed that the selected compounds have favourable physicochemical and drug-like properties. These results suggest these compounds have potential for further optimization and development as effective α-glucosidase inhibitors for diabetes treatment.
期刊介绍:
The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.