Hydrophobic forces at play: insights into AmelOBP4 and brood volatile interactions in Apis mellifera hygienic behavior.

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biomolecular Structure & Dynamics Pub Date : 2024-11-18 DOI:10.1080/07391102.2024.2429019
Ramkumar Haran, Chakkarai Sathyaseelan, Ettiappan Sumathi, Jayakanthan Mannu
{"title":"Hydrophobic forces at play: insights into AmelOBP4 and brood volatile interactions in <i>Apis mellifera</i> hygienic behavior.","authors":"Ramkumar Haran, Chakkarai Sathyaseelan, Ettiappan Sumathi, Jayakanthan Mannu","doi":"10.1080/07391102.2024.2429019","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the intricate processes underlying olfaction necessitates unraveling the complexities of odorant binding protein's interactions with volatile compounds triggering hygienic behavior in <i>Apis mellifera</i>, This study delves into the intricate processes of olfaction by focusing on the interactions between <i>Apis mellifera</i> Odorant Binding Protein 4 (AmelOBP4) and volatile compounds associated with hygienic behavior, employing a comprehensive computational approach. Molecular docking analyses reveal detailed binding interactions, emphasizing the significance of hydrophobic interactions and specific amino acid residues in stabilizing AmelOBP4-volatile complexes, notably with 2-nonacosanone (-8.4 kcal/mol) and hexacosyl acetate (-8.4 kcal/mol). Molecular dynamics simulations demonstrate sustained stability and principal component analysis affirms structural integrity through restricted global motions. Binding free energy calculations underscore robust interactions, with per-residue free energy decomposition identifying key amino acids contributing significantly to binding affinity. These findings illuminate the pivotal role of hydrophobic interactions and specific residues (Phe 60, Leu 83, Ile 116, Leu 126, and Leu 130) in modulating AmelOBP4-volatile interactions, providing foundational insights into volatile-based applications and potential olfactory response modulation, contributing to our understanding of olfactory processes.</p>","PeriodicalId":15272,"journal":{"name":"Journal of Biomolecular Structure & Dynamics","volume":" ","pages":"1-15"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure & Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2429019","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the intricate processes underlying olfaction necessitates unraveling the complexities of odorant binding protein's interactions with volatile compounds triggering hygienic behavior in Apis mellifera, This study delves into the intricate processes of olfaction by focusing on the interactions between Apis mellifera Odorant Binding Protein 4 (AmelOBP4) and volatile compounds associated with hygienic behavior, employing a comprehensive computational approach. Molecular docking analyses reveal detailed binding interactions, emphasizing the significance of hydrophobic interactions and specific amino acid residues in stabilizing AmelOBP4-volatile complexes, notably with 2-nonacosanone (-8.4 kcal/mol) and hexacosyl acetate (-8.4 kcal/mol). Molecular dynamics simulations demonstrate sustained stability and principal component analysis affirms structural integrity through restricted global motions. Binding free energy calculations underscore robust interactions, with per-residue free energy decomposition identifying key amino acids contributing significantly to binding affinity. These findings illuminate the pivotal role of hydrophobic interactions and specific residues (Phe 60, Leu 83, Ile 116, Leu 126, and Leu 130) in modulating AmelOBP4-volatile interactions, providing foundational insights into volatile-based applications and potential olfactory response modulation, contributing to our understanding of olfactory processes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
疏水力的作用:AmelOBP4 与蜜蜂卫生行为中育雏挥发性相互作用的启示。
要了解嗅觉的复杂过程,就必须揭示气味结合蛋白与引发蜂类卫生行为的挥发性化合物相互作用的复杂性。本研究采用一种综合计算方法,通过重点研究蜂类气味结合蛋白4(AmelOBP4)与与卫生行为相关的挥发性化合物之间的相互作用,深入探讨嗅觉的复杂过程。分子对接分析揭示了详细的结合相互作用,强调了疏水相互作用和特定氨基酸残基在稳定 AmelOBP4 与挥发性化合物复合物方面的重要性,特别是与 2-壬酮(-8.4 kcal/mol)和乙酸二十六烷基酯(-8.4 kcal/mol)的结合。分子动力学模拟证明了这种复合物的持续稳定性,而主成分分析则通过限制全局运动确认了其结构的完整性。结合自由能计算强调了强大的相互作用,每残基自由能分解确定了对结合亲和力有重大贡献的关键氨基酸。这些发现阐明了疏水相互作用和特定残基(Phe 60、Leu 83、Ile 116、Leu 126 和 Leu 130)在调节 AmelOBP4 与挥发性物质相互作用中的关键作用,为基于挥发性物质的应用和潜在的嗅觉反应调节提供了基础性见解,有助于我们了解嗅觉过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomolecular Structure & Dynamics
Journal of Biomolecular Structure & Dynamics 生物-生化与分子生物学
CiteScore
8.90
自引率
9.10%
发文量
597
审稿时长
2 months
期刊介绍: The Journal of Biomolecular Structure and Dynamics welcomes manuscripts on biological structure, dynamics, interactions and expression. The Journal is one of the leading publications in high end computational science, atomic structural biology, bioinformatics, virtual drug design, genomics and biological networks.
期刊最新文献
A combination of conserved and stage-specific lncRNA biomarkers to detect lung adenocarcinoma progression. An optimal deep learning approach for breast cancer detection and classification with pre-trained CNN-based feature learning mechanism. Glycosylation analysis of transcription factor TFIIB using bioinformatics and experimental methods. Localization, aggregation, and interaction of glycyrrhizic acid with the plasma membrane. Repurposing of DrugBank molecules as dual non-hydroxamate HDAC8 and HDAC2 inhibitors by pharmacophore modeling, molecular docking, and molecular dynamics studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1