Blahove M. R., Saviskas J. A., Rodriguez J., Santos-Villalobos B. G., Wallace M. A., Culmer J. A., Dr. Carter J. R., Jim
{"title":"Application of mPEG-PCL-mPEG Micelles for Anti-Zika Ribavirin Delivery","authors":"Blahove M. R., Saviskas J. A., Rodriguez J., Santos-Villalobos B. G., Wallace M. A., Culmer J. A., Dr. Carter J. R., Jim","doi":"10.1002/jmv.29952","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Nanoparticles are rapidly becoming the method of choice for a number of nanomedicine applications, especially drug delivery. Many current nanoparticle models for drug delivery include a metal base with a drug conjugated to its surface. However, this raises concerns regarding toxicity since the conjugated drug and metal-based center of the nanoparticle are generally not biocompatible. A novel approach to solve this dilemma is the development of nanosized biocompatible polymer-based micellar nanoparticles (MNPs), created from methoxy poly(ethylene-glycol) poly(ɛ-caprolactone)-methoxy poly(ethylene glycol) (i.e., mPEG-PCL-mPEG) triblock polymers formed around an antiviral drug of choice, ribavirin. The goal is to create a drug carrier triblock nanoparticle system that is labile at a specific intercellular pH resulting in drug release, leading to the suppression of viral pathogens, and without undue toxicity to the cell. Through this approach we created a drug-loaded nanoparticle that dissociates when exposed to pH of 5.49 (endosomal pH), releasing ribavirin intercellularly, resulting in effective suppression of the mosquito-borne virus, Zika, in JEG-3 cells (gestational choriocarcinoma cells), in comparison to untreated and unencapsulated ribavirin controls as shown by plaque reduction assays and confirmation by RT-PCR. The level of suppression observed by ribavirin-loaded MNPs was achieved while requiring approximately 90% less ribavirin than in experiments utilizing unencapsulated ribavirin. The drug delivery system that is described here has shown significant suppression of Zika virus and suggests a role for this drug delivery system as an antiviral platform against additional viral pathogens.</p>\n </div>","PeriodicalId":16354,"journal":{"name":"Journal of Medical Virology","volume":"96 11","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Virology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmv.29952","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoparticles are rapidly becoming the method of choice for a number of nanomedicine applications, especially drug delivery. Many current nanoparticle models for drug delivery include a metal base with a drug conjugated to its surface. However, this raises concerns regarding toxicity since the conjugated drug and metal-based center of the nanoparticle are generally not biocompatible. A novel approach to solve this dilemma is the development of nanosized biocompatible polymer-based micellar nanoparticles (MNPs), created from methoxy poly(ethylene-glycol) poly(ɛ-caprolactone)-methoxy poly(ethylene glycol) (i.e., mPEG-PCL-mPEG) triblock polymers formed around an antiviral drug of choice, ribavirin. The goal is to create a drug carrier triblock nanoparticle system that is labile at a specific intercellular pH resulting in drug release, leading to the suppression of viral pathogens, and without undue toxicity to the cell. Through this approach we created a drug-loaded nanoparticle that dissociates when exposed to pH of 5.49 (endosomal pH), releasing ribavirin intercellularly, resulting in effective suppression of the mosquito-borne virus, Zika, in JEG-3 cells (gestational choriocarcinoma cells), in comparison to untreated and unencapsulated ribavirin controls as shown by plaque reduction assays and confirmation by RT-PCR. The level of suppression observed by ribavirin-loaded MNPs was achieved while requiring approximately 90% less ribavirin than in experiments utilizing unencapsulated ribavirin. The drug delivery system that is described here has shown significant suppression of Zika virus and suggests a role for this drug delivery system as an antiviral platform against additional viral pathogens.
期刊介绍:
The Journal of Medical Virology focuses on publishing original scientific papers on both basic and applied research related to viruses that affect humans. The journal publishes reports covering a wide range of topics, including the characterization, diagnosis, epidemiology, immunology, and pathogenesis of human virus infections. It also includes studies on virus morphology, genetics, replication, and interactions with host cells.
The intended readership of the journal includes virologists, microbiologists, immunologists, infectious disease specialists, diagnostic laboratory technologists, epidemiologists, hematologists, and cell biologists.
The Journal of Medical Virology is indexed and abstracted in various databases, including Abstracts in Anthropology (Sage), CABI, AgBiotech News & Information, National Agricultural Library, Biological Abstracts, Embase, Global Health, Web of Science, Veterinary Bulletin, and others.