Torben Lund, Niels Jacob Krake, Poul Erik Hansen, Fatima AlZahraa Alatraktchi
{"title":"Simplified Flow Photosynthesis of Deuterium-Labeled Pyocyanin.","authors":"Torben Lund, Niels Jacob Krake, Poul Erik Hansen, Fatima AlZahraa Alatraktchi","doi":"10.1002/jlcr.4127","DOIUrl":null,"url":null,"abstract":"<p><p>Deuterium-labeled pyocyanin was prepared from deuterium-labeled phenazine methosulfate in gram scale by a simplified flow photosynthesis in water. The main product was the protonated red form of pyocyanin-d<sub>3</sub> (Pyo-d<sub>3</sub>-H<sup>+</sup>) in 85 % yield. Quantum chemical calculations of NMR support that nitrogen-10 is protonated. The by-products of the photolysis and the stability of the photolysis mixture were carefully characterized by LC-MS and NMR. Four by-products were identified: An isomer of pyocyanin-d<sub>3</sub> (9%), 8-hydroxypyocyanin-d<sub>3</sub> (4%), 1-hydroxyphenazine (0.4%), and phenazine (1%). The Pyo-d<sub>3</sub>-H<sup>+</sup> product was stable in the photolysis solution after storage at 8°C for 2.5 years. Pure blue pyocyanin-d<sub>3</sub> powder was isolated from the red photolysis solution by the Surrey method in 94 % yield. The addition of the red photolysis solution of Pyo-d<sub>3</sub>-H<sup>+</sup> (100 μM) and commercial pyocyanin (100 μM) to Pseudomonas aeruginosa cultures showed the same growth curves demonstrating that the minor impurities in the photolysis solution do not affect the growth behavior of the bacteria. The protonated deuterium-labeled pyocyanin may be used directly in biological experiments, which make the methodology extremely simple and useful for biologists.</p>","PeriodicalId":16288,"journal":{"name":"Journal of labelled compounds & radiopharmaceuticals","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of labelled compounds & radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jlcr.4127","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Deuterium-labeled pyocyanin was prepared from deuterium-labeled phenazine methosulfate in gram scale by a simplified flow photosynthesis in water. The main product was the protonated red form of pyocyanin-d3 (Pyo-d3-H+) in 85 % yield. Quantum chemical calculations of NMR support that nitrogen-10 is protonated. The by-products of the photolysis and the stability of the photolysis mixture were carefully characterized by LC-MS and NMR. Four by-products were identified: An isomer of pyocyanin-d3 (9%), 8-hydroxypyocyanin-d3 (4%), 1-hydroxyphenazine (0.4%), and phenazine (1%). The Pyo-d3-H+ product was stable in the photolysis solution after storage at 8°C for 2.5 years. Pure blue pyocyanin-d3 powder was isolated from the red photolysis solution by the Surrey method in 94 % yield. The addition of the red photolysis solution of Pyo-d3-H+ (100 μM) and commercial pyocyanin (100 μM) to Pseudomonas aeruginosa cultures showed the same growth curves demonstrating that the minor impurities in the photolysis solution do not affect the growth behavior of the bacteria. The protonated deuterium-labeled pyocyanin may be used directly in biological experiments, which make the methodology extremely simple and useful for biologists.
期刊介绍:
The Journal of Labelled Compounds and Radiopharmaceuticals publishes all aspects of research dealing with labeled compound preparation and applications of these compounds. This includes tracer methods used in medical, pharmacological, biological, biochemical and chemical research in vitro and in vivo.
The Journal of Labelled Compounds and Radiopharmaceuticals devotes particular attention to biomedical research, diagnostic and therapeutic applications of radiopharmaceuticals, covering all stages of development from basic metabolic research and technological development to preclinical and clinical studies based on physically and chemically well characterized molecular structures, coordination compounds and nano-particles.