{"title":"Heat waves during egg development alter maternal care and offspring quality in the European earwig.","authors":"Lisa Le Roux, Joël Meunier, Irene Villalta","doi":"10.1016/j.jtherbio.2024.104006","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change can disrupt animal fitness by reducing survival, fertility, fecundity and altering offspring development and survival. While parental care typically helps offspring cope with harsh environmental conditions, little is known about its role in buffering extreme temperature changes, such as heat waves. In this study, we tested whether parental care mitigates the impact of cold and heat waves on eggs and juveniles in the European earwig. In this insect, mothers provide obligatory egg care for about 50 days during winter, typically at temperatures around 10 °C. We exposed mothers and their eggs to three-day thermal waves of 3 °C, 10 °C (control), 17 °C or 24 °C, both 15 and 30 days after oviposition. We then measured four maternal care behaviors, maternal weight variation, as well as eggs' developmental time, survival, and hatching rate. In the resulting juveniles, we measured weight, developmental time, thermal resistance, and the expression of six heat stress and immunity genes. We found that thermal waves reduced maternal care and induced maternal weight gain. High temperatures also decreased egg hatching success, accelerated egg and nymph development, reduced the upper thermal limit of juveniles and decreased the expression of a heat shock protein (Hsp68), while other traits remained unaffected. Overall, this study highlights that access to maternal care is not enough to alleviate the stress of exposure to non-optimal temperatures during egg development in the European earwig. It also suggests that species with maternal care do not necessarily have access to effective thermal protection and may not be better adapted to climate change.</p>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jtherbio.2024.104006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change can disrupt animal fitness by reducing survival, fertility, fecundity and altering offspring development and survival. While parental care typically helps offspring cope with harsh environmental conditions, little is known about its role in buffering extreme temperature changes, such as heat waves. In this study, we tested whether parental care mitigates the impact of cold and heat waves on eggs and juveniles in the European earwig. In this insect, mothers provide obligatory egg care for about 50 days during winter, typically at temperatures around 10 °C. We exposed mothers and their eggs to three-day thermal waves of 3 °C, 10 °C (control), 17 °C or 24 °C, both 15 and 30 days after oviposition. We then measured four maternal care behaviors, maternal weight variation, as well as eggs' developmental time, survival, and hatching rate. In the resulting juveniles, we measured weight, developmental time, thermal resistance, and the expression of six heat stress and immunity genes. We found that thermal waves reduced maternal care and induced maternal weight gain. High temperatures also decreased egg hatching success, accelerated egg and nymph development, reduced the upper thermal limit of juveniles and decreased the expression of a heat shock protein (Hsp68), while other traits remained unaffected. Overall, this study highlights that access to maternal care is not enough to alleviate the stress of exposure to non-optimal temperatures during egg development in the European earwig. It also suggests that species with maternal care do not necessarily have access to effective thermal protection and may not be better adapted to climate change.
期刊介绍:
The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are:
• The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature
• The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature
• Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause
• Effects of temperature on reproduction and development, growth, ageing and life-span
• Studies on modelling heat transfer between organisms and their environment
• The contributions of temperature to effects of climate change on animal species and man
• Studies of conservation biology and physiology related to temperature
• Behavioural and physiological regulation of body temperature including its pathophysiology and fever
• Medical applications of hypo- and hyperthermia
Article types:
• Original articles
• Review articles