Aline Santo Vieceli, Paulo Cesar Lock Silveira, Rubya Pereira Zaccaron, Marisa de Cássia Registro Fonseca, Aderbal Silva Aguiar-Junior, Lais Mara Siqueira das Neves, Heloyse Uliam Kuriki, Rafael Inacio Barbosa, Alexandre Marcio Marcolino
{"title":"Influence of photobiomodulation and radiofrequency on the healing of pressure lesions in mice.","authors":"Aline Santo Vieceli, Paulo Cesar Lock Silveira, Rubya Pereira Zaccaron, Marisa de Cássia Registro Fonseca, Aderbal Silva Aguiar-Junior, Lais Mara Siqueira das Neves, Heloyse Uliam Kuriki, Rafael Inacio Barbosa, Alexandre Marcio Marcolino","doi":"10.1007/s10103-024-04226-5","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this study was to ascertain the impact of photobiomodulation and radiofrequency on the healing of pressure injuries in mice. A total of 70 animals were randomly assigned to seven experimental groups. A pressure injury was induced in the dorsal region of the mice by the application of two magnets. The photobiomodulation treatment was administered at a dosage of 3.6 J per session. In the radiofrequency group, the treatment time was four minutes and the power was 22 watts. The analyses included the lesion area, infrared thermography, and the collection of material for cytokine, histological, and histochemical analyses following euthanasia. In the macroscopic analyses, the 660 nm photobiomodulation group demonstrated superior outcomes in comparison to the control group. With regard to the microscopic analyses, the greatest difference between the groups was observed when TNF-α was evaluated in the photobiomodulation group. It can be observed that the groups irradiated by electrophysical means (i.e., a combination of radiofrequency with PBM 830 nm-660 nm) exhibited a positive influence on the repair process, with the greatest impact observed in the group irradiated by a combination of radiofrequency and 660 nm photobiomodulation.</p>","PeriodicalId":17978,"journal":{"name":"Lasers in Medical Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lasers in Medical Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10103-024-04226-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study was to ascertain the impact of photobiomodulation and radiofrequency on the healing of pressure injuries in mice. A total of 70 animals were randomly assigned to seven experimental groups. A pressure injury was induced in the dorsal region of the mice by the application of two magnets. The photobiomodulation treatment was administered at a dosage of 3.6 J per session. In the radiofrequency group, the treatment time was four minutes and the power was 22 watts. The analyses included the lesion area, infrared thermography, and the collection of material for cytokine, histological, and histochemical analyses following euthanasia. In the macroscopic analyses, the 660 nm photobiomodulation group demonstrated superior outcomes in comparison to the control group. With regard to the microscopic analyses, the greatest difference between the groups was observed when TNF-α was evaluated in the photobiomodulation group. It can be observed that the groups irradiated by electrophysical means (i.e., a combination of radiofrequency with PBM 830 nm-660 nm) exhibited a positive influence on the repair process, with the greatest impact observed in the group irradiated by a combination of radiofrequency and 660 nm photobiomodulation.
期刊介绍:
Lasers in Medical Science (LIMS) has established itself as the leading international journal in the rapidly expanding field of medical and dental applications of lasers and light. It provides a forum for the publication of papers on the technical, experimental, and clinical aspects of the use of medical lasers, including lasers in surgery, endoscopy, angioplasty, hyperthermia of tumors, and photodynamic therapy. In addition to medical laser applications, LIMS presents high-quality manuscripts on a wide range of dental topics, including aesthetic dentistry, endodontics, orthodontics, and prosthodontics.
The journal publishes articles on the medical and dental applications of novel laser technologies, light delivery systems, sensors to monitor laser effects, basic laser-tissue interactions, and the modeling of laser-tissue interactions. Beyond laser applications, LIMS features articles relating to the use of non-laser light-tissue interactions.