Enhancing the Mechanical Properties of Co-Cr Dental Alloys Fabricated by Laser Powder Bed Fusion: Evaluation of Quenching and Annealing as Heat Treatment Methods.
Bartlomiej Konieczny, Agata Szczesio-Wlodarczyk, Artur Andrearczyk, Bartlomiej Januszewicz, Sebastian Lipa, Rafał Zieliński, Jerzy Sokolowski
{"title":"Enhancing the Mechanical Properties of Co-Cr Dental Alloys Fabricated by Laser Powder Bed Fusion: Evaluation of Quenching and Annealing as Heat Treatment Methods.","authors":"Bartlomiej Konieczny, Agata Szczesio-Wlodarczyk, Artur Andrearczyk, Bartlomiej Januszewicz, Sebastian Lipa, Rafał Zieliński, Jerzy Sokolowski","doi":"10.3390/ma17215313","DOIUrl":null,"url":null,"abstract":"<p><p>Residual stresses and anisotropic structures characterize laser powder bed fusion (L-PBF) products due to rapid thermal changes during fabrication, potentially leading to microcracking and lower strength. Post-heat treatments are crucial for enhancing mechanical properties. Numerous dental technology laboratories worldwide are adopting the new technologies but must invest considerable time and resources to refine them for specific requirements. Our research can assist researchers in identifying thermal processes that enhance the mechanical properties of dental Co-Cr alloys. In this study, high cooling rates (quenching) and annealing after quenching were evaluated for L-PBF Co-Cr dental alloys. Cast samples (standard manufacturing method) were tested as a second reference material. Tensile strength, Vickers hardness, microstructure characterization, and phase identification were performed. Significant differences were found among the L-PBF groups and the cast samples. The lowest tensile strength (707 MPa) and hardness (345 HV) were observed for cast Starbond COS. The highest mechanical properties (1389 MPa, 535 HV) were observed for the samples subjected to the water quenching and reheating methods. XRD analysis revealed that the face-centered cubic (FCC) and hexagonal close-packed (HCP) phases are influenced by the composition and heat treatment. Annealing after quenching improved the microstructure homogeneity and increased the HCP content. L-PBF techniques yielded superior mechanical properties compared to traditional casting methods, offering efficiency and precision. Future research should focus on fatigue properties.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 21","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547738/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17215313","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Residual stresses and anisotropic structures characterize laser powder bed fusion (L-PBF) products due to rapid thermal changes during fabrication, potentially leading to microcracking and lower strength. Post-heat treatments are crucial for enhancing mechanical properties. Numerous dental technology laboratories worldwide are adopting the new technologies but must invest considerable time and resources to refine them for specific requirements. Our research can assist researchers in identifying thermal processes that enhance the mechanical properties of dental Co-Cr alloys. In this study, high cooling rates (quenching) and annealing after quenching were evaluated for L-PBF Co-Cr dental alloys. Cast samples (standard manufacturing method) were tested as a second reference material. Tensile strength, Vickers hardness, microstructure characterization, and phase identification were performed. Significant differences were found among the L-PBF groups and the cast samples. The lowest tensile strength (707 MPa) and hardness (345 HV) were observed for cast Starbond COS. The highest mechanical properties (1389 MPa, 535 HV) were observed for the samples subjected to the water quenching and reheating methods. XRD analysis revealed that the face-centered cubic (FCC) and hexagonal close-packed (HCP) phases are influenced by the composition and heat treatment. Annealing after quenching improved the microstructure homogeneity and increased the HCP content. L-PBF techniques yielded superior mechanical properties compared to traditional casting methods, offering efficiency and precision. Future research should focus on fatigue properties.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.