Liting Yu, Haoyi Kang, Rui Li, Jianzhong Pei, Yizhi Du
{"title":"A Study on the Environmental Performance of an Asphalt Mixture Modified with Directly Added Waste Plastic.","authors":"Liting Yu, Haoyi Kang, Rui Li, Jianzhong Pei, Yizhi Du","doi":"10.3390/ma18051168","DOIUrl":null,"url":null,"abstract":"<p><p>The environmental pollution caused by waste plastics has raised widespread concern within the global academic community. The use of waste plastic in road construction is seen as a future trend for road materials, offering benefits such as energy conservation, pollution reduction, and the enhanced high-temperature performance of asphalt mixtures. However, conventional testing methods have limited the scope of performance measurements for modified asphalt mixtures, and fewer studies have explored the pavement performance of such mixtures. This study evaluated the environmental performance of asphalt mixtures modified with waste plastics. A series of experiments, including rutting tests, low-temperature bending tests, water stability tests, and aging tests, demonstrated that the use of waste plastic-modified asphalt significantly improved high-temperature performance. Notably, with transition dispersants, the rutting resistance improved by 24.5%, and the low-temperature bending strength increased by 15.8%, demonstrating excellent anti-aging properties. Statistical analysis indicated that waste plastic-modified asphalt has superior high-temperature stability and good low-temperature crack resistance.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 5","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902065/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18051168","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The environmental pollution caused by waste plastics has raised widespread concern within the global academic community. The use of waste plastic in road construction is seen as a future trend for road materials, offering benefits such as energy conservation, pollution reduction, and the enhanced high-temperature performance of asphalt mixtures. However, conventional testing methods have limited the scope of performance measurements for modified asphalt mixtures, and fewer studies have explored the pavement performance of such mixtures. This study evaluated the environmental performance of asphalt mixtures modified with waste plastics. A series of experiments, including rutting tests, low-temperature bending tests, water stability tests, and aging tests, demonstrated that the use of waste plastic-modified asphalt significantly improved high-temperature performance. Notably, with transition dispersants, the rutting resistance improved by 24.5%, and the low-temperature bending strength increased by 15.8%, demonstrating excellent anti-aging properties. Statistical analysis indicated that waste plastic-modified asphalt has superior high-temperature stability and good low-temperature crack resistance.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.