Yingqiu Song , Yanhui Peng , Bing Wang , Xinyue Zhou , Yikang Cai , Haiyong Chen , Chenggui Miao
{"title":"The roles of pyroptosis in the pathogenesis of autoimmune diseases","authors":"Yingqiu Song , Yanhui Peng , Bing Wang , Xinyue Zhou , Yikang Cai , Haiyong Chen , Chenggui Miao","doi":"10.1016/j.lfs.2024.123232","DOIUrl":null,"url":null,"abstract":"<div><div>The occurrence of autoimmune diseases is a result of the immune system's immune response against healthy components of the body. Pyroptosis is an innovative form of programmed cell death dependent on inflammatory caspases, leading to the release of cytokines. Excessive pyroptosis can lead to a sustained inflammatory response, which may aggravate the development of autoimmune diseases. In rheumatoid arthritis (RA), tumor necrosis factor (TNF) and NLRP3 enhance pyroptosis, exacerbating the disease. In systemic lupus erythematosus (SLE), the release of nuclear antigen promotes the development of SLE. In multiple sclerosis (MS), elevated active caspase-11 in primary astrocytes induces oligodendrocyte pyroptosis, advancing MS progression. This review outlines the mechanisms of pyroptosis in autoimmune diseases. Meanwhile, we elaborated the possible therapeutic targets from the perspective of pyroptosis. We conclude that pyroptosis is expected to be a therapeutic target for autoimmune diseases.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"359 ","pages":"Article 123232"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320524008221","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The occurrence of autoimmune diseases is a result of the immune system's immune response against healthy components of the body. Pyroptosis is an innovative form of programmed cell death dependent on inflammatory caspases, leading to the release of cytokines. Excessive pyroptosis can lead to a sustained inflammatory response, which may aggravate the development of autoimmune diseases. In rheumatoid arthritis (RA), tumor necrosis factor (TNF) and NLRP3 enhance pyroptosis, exacerbating the disease. In systemic lupus erythematosus (SLE), the release of nuclear antigen promotes the development of SLE. In multiple sclerosis (MS), elevated active caspase-11 in primary astrocytes induces oligodendrocyte pyroptosis, advancing MS progression. This review outlines the mechanisms of pyroptosis in autoimmune diseases. Meanwhile, we elaborated the possible therapeutic targets from the perspective of pyroptosis. We conclude that pyroptosis is expected to be a therapeutic target for autoimmune diseases.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.