Yuhang Zhang , Ge Yang , Yansong Gao , Lei Gao , You Kang , Yujuan Zhao , Lei Zhao , Shengyu Li
{"title":"Total minor ginsenosides exert anti-fatigue effects via antioxidant, anti-inflammatory, regulating gut microbiota and serum metabolism","authors":"Yuhang Zhang , Ge Yang , Yansong Gao , Lei Gao , You Kang , Yujuan Zhao , Lei Zhao , Shengyu Li","doi":"10.1016/j.lfs.2024.123231","DOIUrl":null,"url":null,"abstract":"<div><div>Minor ginsenosides have demonstrated notable anti-fatigue capabilities. The aim of this study was to investigate the anti-fatigue mechanisms of total minor ginsenosides (TMGs) derived from a process involving probiotic fermentation and high-pressure steam treatment. The fatigue model was established in BALB/c male mice using weight-bearing swimming and TMGs were administered by orally at a dosage of 200 mg/kg for four weeks. The anti-fatigue mechanisms of TMGs were explored by assessing liver oxidative stress, skeletal muscle inflammation markers, as well as their impact on gut microbiota and serum metabolism. The results indicated that TMGs could significantly increase the levels of SOD, CAT, ATP and Na<sup>+</sup>-K<sup>+</sup>-ATPase and enhance the antioxidant capacity by modulating the PGC-1α/KEAP1/NRF2/HO-1 pathway. Meanwhile, TMGs reducing the levels of inflammatory factors TNF-α, IL-1β and IL-6 and inhibited inflammation by modulating the AMPK/TORC2/CREB/PGC-1α pathway. TMGs also regulated the gut microbiota, increasing the abundance of probiotic bacteria and the content of short-chain fatty acids (SCFAs) in the cecum. Serum metabolomics analyses have shown that TMGs can significantly affect the serum metabolic profile of fatigue model mice, regulating metabolic markers through affecting anti-fatigue-related metabolic pathways. In conclusion, TMGs exerted significant anti-fatigue effects through antioxidant and anti-inflammatory effects, and alleviate fatigue by regulating gut microbiota and serum metabolism.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"359 ","pages":"Article 123231"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002432052400821X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Minor ginsenosides have demonstrated notable anti-fatigue capabilities. The aim of this study was to investigate the anti-fatigue mechanisms of total minor ginsenosides (TMGs) derived from a process involving probiotic fermentation and high-pressure steam treatment. The fatigue model was established in BALB/c male mice using weight-bearing swimming and TMGs were administered by orally at a dosage of 200 mg/kg for four weeks. The anti-fatigue mechanisms of TMGs were explored by assessing liver oxidative stress, skeletal muscle inflammation markers, as well as their impact on gut microbiota and serum metabolism. The results indicated that TMGs could significantly increase the levels of SOD, CAT, ATP and Na+-K+-ATPase and enhance the antioxidant capacity by modulating the PGC-1α/KEAP1/NRF2/HO-1 pathway. Meanwhile, TMGs reducing the levels of inflammatory factors TNF-α, IL-1β and IL-6 and inhibited inflammation by modulating the AMPK/TORC2/CREB/PGC-1α pathway. TMGs also regulated the gut microbiota, increasing the abundance of probiotic bacteria and the content of short-chain fatty acids (SCFAs) in the cecum. Serum metabolomics analyses have shown that TMGs can significantly affect the serum metabolic profile of fatigue model mice, regulating metabolic markers through affecting anti-fatigue-related metabolic pathways. In conclusion, TMGs exerted significant anti-fatigue effects through antioxidant and anti-inflammatory effects, and alleviate fatigue by regulating gut microbiota and serum metabolism.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.