Effects of Silver Nanoparticles on Ctenopharyngodon idella: Synthesis, Characterization, Antibacterial Activity, and Toxicological Assessment.

IF 2 3区 工程技术 Q2 ANATOMY & MORPHOLOGY Microscopy Research and Technique Pub Date : 2024-11-13 DOI:10.1002/jemt.24733
Mian Adnan Kakakhel, Arshad Jamil, Nishita Narwal
{"title":"Effects of Silver Nanoparticles on Ctenopharyngodon idella: Synthesis, Characterization, Antibacterial Activity, and Toxicological Assessment.","authors":"Mian Adnan Kakakhel, Arshad Jamil, Nishita Narwal","doi":"10.1002/jemt.24733","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, nanotechnology (NT) and nanoparticles (NPs) have gained significant attention in the scientific field due to their diverse application history. Particularly, in environmental applications, their antibacterial efficiency in fisheries due to antibacterial resistance. However, the NPs have been found toxic in the environment. Therefore, the current study aimed to fabricate less toxic NPs using environmentally dried leaves to check their antibacterial efficacy and possible toxicity against grass carp. The findings confirmed the good dispersity of obtained AgNPs, which further showed promising antibacterial activity against several bacterial isolates including Staphylococcus with a zone of inhibition (23.73 ± 0.57 nm). Also, the AgNPs were exposed to the grass carp (Ctenopharyngodon idella) for possible toxicity and toxic effects. First, the bioaccumulation of AgNPs was significantly observed in gills followed by intestines and muscles (p < 0.05). Finally, the AgNPs mainly accumulate in the liver, followed by the intestine, gills, and muscles. Additionally, the deposition of AgNPs in various organs resulted in histological alteration such as necrosis and infiltration of red blood cells in the intestine and the fusion of gill lamella. Hence, the synthesized NPs using dried leaf extract could be a promising approach in applied science. The significant features of the nanoparticles in the present work using green synthesis can help in synthesizing less toxic materials.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy Research and Technique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24733","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, nanotechnology (NT) and nanoparticles (NPs) have gained significant attention in the scientific field due to their diverse application history. Particularly, in environmental applications, their antibacterial efficiency in fisheries due to antibacterial resistance. However, the NPs have been found toxic in the environment. Therefore, the current study aimed to fabricate less toxic NPs using environmentally dried leaves to check their antibacterial efficacy and possible toxicity against grass carp. The findings confirmed the good dispersity of obtained AgNPs, which further showed promising antibacterial activity against several bacterial isolates including Staphylococcus with a zone of inhibition (23.73 ± 0.57 nm). Also, the AgNPs were exposed to the grass carp (Ctenopharyngodon idella) for possible toxicity and toxic effects. First, the bioaccumulation of AgNPs was significantly observed in gills followed by intestines and muscles (p < 0.05). Finally, the AgNPs mainly accumulate in the liver, followed by the intestine, gills, and muscles. Additionally, the deposition of AgNPs in various organs resulted in histological alteration such as necrosis and infiltration of red blood cells in the intestine and the fusion of gill lamella. Hence, the synthesized NPs using dried leaf extract could be a promising approach in applied science. The significant features of the nanoparticles in the present work using green synthesis can help in synthesizing less toxic materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米银颗粒对栉水母的影响:银纳米颗粒的合成、特性、抗菌活性和毒理学评估
目前,纳米技术(NT)和纳米粒子(NPs)因其多样化的应用历史而在科学领域备受关注。特别是在环境应用方面,由于具有抗菌性,它们在渔业中的抗菌效率很高。然而,人们发现 NPs 在环境中具有毒性。因此,本研究旨在利用环境中的干燥树叶制造毒性较低的 NPs,以检测其抗菌功效和对草鱼可能存在的毒性。研究结果证实,所获得的 AgNPs 具有良好的分散性,对包括葡萄球菌在内的多种细菌分离物具有良好的抗菌活性,抑制区为(23.73 ± 0.57 nm)。此外,还将 AgNPs 暴露于草鱼(Ctenopharyngodon idella),以检测其可能的毒性和毒性效应。首先,AgNPs 在鳃中的生物蓄积显著,其次是肠道和肌肉(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microscopy Research and Technique
Microscopy Research and Technique 医学-解剖学与形态学
CiteScore
5.30
自引率
20.00%
发文量
233
审稿时长
4.7 months
期刊介绍: Microscopy Research and Technique (MRT) publishes articles on all aspects of advanced microscopy original architecture and methodologies with applications in the biological, clinical, chemical, and materials sciences. Original basic and applied research as well as technical papers dealing with the various subsets of microscopy are encouraged. MRT is the right form for those developing new microscopy methods or using the microscope to answer key questions in basic and applied research.
期刊最新文献
PathoCoder: Rethinking the Flaws of Patch-Based Learning for Multi-Class Classification in Computational Pathology. Visualization of Unhatched Brine Shrimp Eggs in Zebrafish Intestines Using Synchrotron Radiation Phase-Contrast CT. Biosilica 3D Micromorphology of Geodiidae Sponge Spicules Is Patterned by F-Actin. Enhanced Photocatalytic Degradation of Bisphenol A by a Novel MOF/CuFe2O4 Composite in Wastewater Treatment. Optimizing Skin Cancer Diagnosis: A Modified Ensemble Convolutional Neural Network for Classification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1