Yingying Xiong, Zhuoer Lu, Yuyin Shao, Peiyi Meng, Guoli Wang, Xinwen Zhou, Jun Yao, Huimin Bao, Haojie Lu
{"title":"Rapid and large-scale glycopeptide enrichment strategy based on chemical ligation.","authors":"Yingying Xiong, Zhuoer Lu, Yuyin Shao, Peiyi Meng, Guoli Wang, Xinwen Zhou, Jun Yao, Huimin Bao, Haojie Lu","doi":"10.1093/nsr/nwae341","DOIUrl":null,"url":null,"abstract":"<p><p>Protein glycosylation, the most universal post-translational modification, is thought to play a crucial role in regulating multiple essential cellular processes. However, the low abundance of glycoproteins and the heterogeneity of glycans complicate their comprehensive analysis. Here, we develop a rapid and large-scale glycopeptide enrichment strategy via bioorthogonal ligation and trypsin cleavage. The enrichment process is performed in one tube to minimize sample loss and time costs. This method combines convenience and practicality, identifying over 900 O-GlcNAc sites from a 500 μg sample. Surprisingly, it allows simultaneous identification of N-glycosites, O-GlcNAc sites, O-GalNAc sites and N-glycans via a two-step enzymatic release strategy. Combined with quantitative analysis, it reveals the distinct O-GlcNAcylation patterns in different compartments during oxidative stress. In summary, our study offers a convenient and robust tool for glycoproteome and glycome profiling, facilitating in-depth analysis to elucidate the biological functions of glycosylation.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"11 11","pages":"nwae341"},"PeriodicalIF":16.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556338/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae341","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Protein glycosylation, the most universal post-translational modification, is thought to play a crucial role in regulating multiple essential cellular processes. However, the low abundance of glycoproteins and the heterogeneity of glycans complicate their comprehensive analysis. Here, we develop a rapid and large-scale glycopeptide enrichment strategy via bioorthogonal ligation and trypsin cleavage. The enrichment process is performed in one tube to minimize sample loss and time costs. This method combines convenience and practicality, identifying over 900 O-GlcNAc sites from a 500 μg sample. Surprisingly, it allows simultaneous identification of N-glycosites, O-GlcNAc sites, O-GalNAc sites and N-glycans via a two-step enzymatic release strategy. Combined with quantitative analysis, it reveals the distinct O-GlcNAcylation patterns in different compartments during oxidative stress. In summary, our study offers a convenient and robust tool for glycoproteome and glycome profiling, facilitating in-depth analysis to elucidate the biological functions of glycosylation.
期刊介绍:
National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178.
National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.