Van der Waals epitaxial growth of single-crystal molecular film.

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES National Science Review Pub Date : 2024-10-15 eCollection Date: 2024-11-01 DOI:10.1093/nsr/nwae358
Lixin Liu, Penglai Gong, Kailang Liu, Bingrong Huang, Zhihao Zhang, Yingshuang Fu, Yu Wu, Yinghe Zhao, Meihui Wang, Yongshan Xu, Huiqiao Li, Tianyou Zhai
{"title":"Van der Waals epitaxial growth of single-crystal molecular film.","authors":"Lixin Liu, Penglai Gong, Kailang Liu, Bingrong Huang, Zhihao Zhang, Yingshuang Fu, Yu Wu, Yinghe Zhao, Meihui Wang, Yongshan Xu, Huiqiao Li, Tianyou Zhai","doi":"10.1093/nsr/nwae358","DOIUrl":null,"url":null,"abstract":"<p><p>Epitaxy is the cornerstone of semiconductor technology, enabling the fabrication of single-crystal film. Recent advancements in van der Waals (vdW) epitaxy have opened new avenues for producing wafer-scale single-crystal 2D atomic crystals. However, when it comes to molecular crystals, the overall weak vdW force means that it is a significant challenge for small molecules to form a well-ordered structure during epitaxy. Here we demonstrate that the vdW epitaxy of Sb<sub>2</sub>O<sub>3</sub> molecular crystal, where the whole growth process is governed by vdW interactions, can be precisely controlled. The nucleation is deterministically modulated by epilayer-substrate interactions and unidirectional nuclei are realized through designing the lattice and symmetry matching between epilayer and substrate. Moreover, the growth and coalescence of nuclei as well as the layer-by-layer growth mode are kinetically realized via tackling the Schwoebel-Ehrlich barrier. Such precise control of vdW epitaxy enables the growth of single-crystal Sb<sub>2</sub>O<sub>3</sub> molecular film with desirable thickness. Using the ultrathin highly oriented Sb<sub>2</sub>O<sub>3</sub> film as a gate dielectric, we fabricated MoS<sub>2</sub>-based field-effect transistors that exhibit superior device performance. The results substantiate the viability of precisely managing molecule alignment in vdW epitaxy, paving the way for large-scale synthesis of single-crystal 2D molecular crystals.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"11 11","pages":"nwae358"},"PeriodicalIF":16.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556342/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae358","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Epitaxy is the cornerstone of semiconductor technology, enabling the fabrication of single-crystal film. Recent advancements in van der Waals (vdW) epitaxy have opened new avenues for producing wafer-scale single-crystal 2D atomic crystals. However, when it comes to molecular crystals, the overall weak vdW force means that it is a significant challenge for small molecules to form a well-ordered structure during epitaxy. Here we demonstrate that the vdW epitaxy of Sb2O3 molecular crystal, where the whole growth process is governed by vdW interactions, can be precisely controlled. The nucleation is deterministically modulated by epilayer-substrate interactions and unidirectional nuclei are realized through designing the lattice and symmetry matching between epilayer and substrate. Moreover, the growth and coalescence of nuclei as well as the layer-by-layer growth mode are kinetically realized via tackling the Schwoebel-Ehrlich barrier. Such precise control of vdW epitaxy enables the growth of single-crystal Sb2O3 molecular film with desirable thickness. Using the ultrathin highly oriented Sb2O3 film as a gate dielectric, we fabricated MoS2-based field-effect transistors that exhibit superior device performance. The results substantiate the viability of precisely managing molecule alignment in vdW epitaxy, paving the way for large-scale synthesis of single-crystal 2D molecular crystals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单晶分子薄膜的范德华外延生长。
外延是半导体技术的基石,它使单晶薄膜的制造成为可能。范德华(vdW)外延技术的最新进展为生产晶圆级单晶二维原子晶体开辟了新途径。然而,就分子晶体而言,整体较弱的范德华力意味着小分子在外延过程中形成有序结构是一项重大挑战。在这里,我们证明了 Sb2O3 分子晶体的 vdW 外延(整个生长过程受 vdW 相互作用的控制)是可以精确控制的。通过设计外延层和衬底之间的晶格和对称性匹配,可以确定性地调节成核,并实现单向成核。此外,核的生长和凝聚以及逐层生长模式都是通过解决施沃贝尔-埃尔利希(Schwoebel-Ehrlich)势垒来实现的。这种对 vdW 外延的精确控制使得具有理想厚度的单晶 Sb2O3 分子薄膜得以生长。利用超薄的高取向 Sb2O3 薄膜作为栅极电介质,我们制造出了基于 MoS2 的场效应晶体管,并表现出了卓越的器件性能。这些结果证明了在 vdW 外延中精确管理分子排列的可行性,为大规模合成单晶二维分子晶体铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
期刊最新文献
Origin of sulfate in post-snowball-Earth oceans: river inputs vs. shelf-derived H2S. Contribution of irrigation to the production of maize, wheat, and rice in the major global producing countries. Fossil evidence for silica biomineralization in Permian lycophytes. Shaping the future of fiber technology: exploring functional and smart innovations. The search for life signatures on Mars by the Tianwen-3 Mars sample return mission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1